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Abstract

In this dissertation, we investigate the use of Hawkes processes to model limit order book

dynamics. We give empirical evidence for the applicability of this counting process to

model order arrivals in a limit order book. We then use a scaling limit theorem and the

framework developed by Hambly et al. in [18] to obtain a multivariate SDE model for the

profile of the entire limit order book. To demonstrate the effectiveness of this model, we

calibrate the SDE parameters to a real data set and simulate the order book dynamics. We

compare our results to those obtained using the SPDE model given in [18] and we find that,

while our model does a reasonable job of simulating the price process, it overestimates the

volatility of the order book profile. Finally, we perform our analysis on a day of unusually

high volatility and we assess the robustness of our assumptions and methodologies.
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Section 1

Introduction

Electronic, order-driven markets are becoming evermore popular and with limit order books at their core,

a rich literature focused on building robust models for the limit order book (LOB) has been developed.

The potential advantages of developing a meaningful model of the dynamics of LOBs are extremely

broad: from gaining clearer insight into the role of supply and demand in price dynamics, to informing

the design of electronic trading algorithms and optimal execution strategies. Abergal et al. give a

comprehensive overview of the theoretical and empirical literature available [3].

LOB models typically come from one of two independent schools of thought. The first is based on

a perfect-rationality approach. Pioneered by economists, this approach assumes all market participants

employ optimal strategies when placing limit orders. A review of models in this framework can be

found in [32]. The second approach, initiated by physicists and mathematicians, is the zero-intelligence

approach, where the order book is treated as a purely stochastic system, and no strategic order placement

is taken into account. While there is no clear consensus on which is the best approach, there has been

some attempt to bridge the gap between them, for an example, see Section 3.2 in [24]. This dissertation

falls into the framework of the zero-intelligence approach.

Finding a large-scale diffusive limit of the LOB process has been given a lot attention in recent

literature and several recent papers have developed stochastic partial differential equation models to

describe the evolution of the LOB or its price dynamics ([11], [24]), [18], [13]). Much of the literature is

concerned with modelling the first queue of the LOB, as this is where the majority of the activity occurs.

The rest of the book is disregarded and when the queue is depleted, its new value is taken from some

stationary distribution. The question of modelling the entire profile of the order book is, however, also

worth exploring, and there have been several efforts to answer this question in recent years. In [8] and

[25], functional central limit theorems for both sides of the book are developed and used to obtain ODE-

PDE models for the price-volume process. Similar approaches are also taken in [13] and [28] to obtain

SPDE models for the order book profiles. Hambly et al. start from the framework of understanding the

LOB as a multi-class queuing system (as in [1], [10], [24]) and find the scaled limit of this system in

time and space to arrive at another SPDE model for the dynamics of the book.
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There is significant empirical evidence that the rate of order arrivals depends on the state of the

book at the time of the arrival, and many of the models discussed above include this dependence in the

dynamics of order arrivals. There is, however, also empirical evidence of clustering of order arrivals and

interdependence between the arrival rates of orders across different types and queues (see, for example,

[23] and [24]), and these phenomena are often not taken into account.

Hawkes processes, first introduced in [19], provide a natural and tractable extension of the Poisson

process that enable us to model the clustering and cross-dependencies of events. Their application in

limit order book modelling has been studied extensively, see [5] or [21] for a review. Another topic of

interest in the last decade has been the diffusion limit of Hawkes processes (see [2], [4], and [27]), and

Hawkes processes with state-dependent intensities have also been the topic of several recent papers ([33],

[31] and [26]). In [3], Abergel et al. combine the ergodic theory of Markov processes with Martingale

convergence theorems to derive a large scale limit of the price process when driven by an exponential,

state-dependent Hawkes processes. In [26], Hawkes random measures are used to obtain an SDE-ODE

model for the limit order book. Other than this, little has been done in the way of finding an SPDE

model for the limit order book when the underlying order arrivals are driven by Hawkes processes. The

aim of this dissertation is to investigate the possibility of extending the SPDE model in [18] to include

event arrival rates driven by Hawkes processes.

The organisation of this dissertation is as follows: in Section 2, we introduce Hawkes processes

and develop the theory necessary to investigate Hawkes processes as the driving processes of LOB

events. In Section 3, we define limit order books in more detail and we extend the work done in [18] to

include clustering and cross-dependencies of order book events. Finally, in Section 4, we give empirical

justification for our use of the Hawkes process. In this section, we will also implement our model

numerically using data from LOBSTER, and we will demonstrate its ability to reproduce reasonable

price series and order book profiles.
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Section 2

Hawkes Processes

In this chapter, we will state some basic definitions and present some of the main results about Hawkes

processes that will be used in what follows. Throughout this dissertation we will work on a probability

space (Ω,F ,P) satisfying the usual conditions.

2.1 Definitions and Preliminary Results

We begin by giving some basic definitions about point processes, referring the reader to [15] for more

detail.

Definition 2.1.1. A point process is a stochastic process (Tk)k∈N taking values in R+ such that for every

k ∈ N, Tk ≤ Tk+1.

Definition 2.1.2. Given a point process (Tk)k∈N, the process defined by

N(t) =
∑
k∈N

1{Tk≤t}

is the counting process associated with (Tk)k∈N.

An important characteristic of the counting process is its so-called conditional intensity:

Definition 2.1.3. The conditional intensity of a counting process N(t) is defined to be

λ(t) := lim
∆→0

E[N(t+ ∆)−N(t)|Ft],

where the filtration Ft is the filtration generated by the counting process, i.e. Ft := σ(N(s) : 0 ≤ s ≤
t).

Another important quantity in the study of point processes is the point-wise integral of the condi-

tional intensity of the process, Λ(t), i.e.

Λ(t) =

∫ t

0
λ(s)ds. (2.1)

We call this value the compensator of the process, and we have the following useful result about com-

pensators (Lemma 7.2.V in [15]):
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Theorem 2.1.1. Suppose the Ft-adapted counting process (N(t))t∈[0,∞) has left-continuous intensity

λ(t). Then, the process M(t) = N(t)− Λ(t) is an F-martingale, i.e. for every 0 ≤ s ≤ t,

E[M(t)|Fs] = M(s).

We also have several notions of regularity for counting processes, namely stationarity, simplicity and

orderliness. A counting process N is (strictly) stationary if N(t+ s)−N(s) has the same distribution

for all s ≥ 0. N is simple when

P(N({t}) = 0 or 1 for all t) = 1, (2.2)

and it is orderly when it is stationary and

P(N(t+ h)−N(t) ≥ 2) = o(h) as h→ 0. (2.3)

One of the most commonly encountered counting processes is a Poisson process, which is defined

via its intensity as follows:

Definition 2.1.4. Let N be a counting process and consider a sequence (si, ti], of half-open intervals

with 0 ≤ si < ti ≤ si+1, i ∈ {1, . . . , k}. N is called a Poisson process with intensity λ > 0 if

P [N(ti)−N(si) = ni, i ∈ {1, . . . , k}] =
k∏
i=1

[λ(si − ti)]ni

ni!
eλ(si−ti).

It follows from this definition that a Poisson process satisfies the following two properties:

(i) The number of events in an interval [s, t), 0 ≤ s < t, follows a Poisson distribution with mean

λ(t− s),

(ii) the process has independent increments, i.e. the number of arrivals in disjoint intervals are inde-

pendent.

Remark 2.1.2. The Poisson process is also often defined as a counting process that satisfies properties

(i) and (ii) above.

It is natural to extend the Poisson process to allow its intensity to depend on time or to be random. These

extensions are called non-homogeneous Poisson and Cox processes, respectively.

An important property of the Poisson process is that it is memoryless, i.e. the distribution of fu-

ture arrival times depends only on the information available at the current time, and not on what has

happened in the past. Because of this, the Poisson process fails to capture the clustering (self-exciting)

and interdependent (cross-exciting) behaviour of order book events. To address this, we will consider a

natural and tractable extension of the Poisson process: the Hawkes process.

4



The Hawkes process was first defined in [19] as a counting process whose intensity function is a

linear regression on the past of the process, i.e.

λ(t) = µ+

∫ t

0
φ(t− s)dNs,

where µ ∈ R+ is the exogenous intensity of the process and φ(t) : R+ → R+ is the kernel function of

the process.

In one dimension, this process is self-exciting, i.e. the arrival of an event increases the likelihood of

observing events in the near future. It is also useful to consider the case when there is more than one

type of event, and there is mutual excitement between the different events. For d such events, we define

a d-dimensional Hawkes process:

Definition 2.1.5. A d-dimensional counting process N = (N1, . . . , Nd) is a multivariate Hawkes pro-

cess when

λi(t) = µi +

d∑
j=1

∫ t

0
φij(t− s)dNj,s, (2.4)

where µi ∈ R+ are called the exogenous intensities and the functions φij are called the (exciting) kernel

functions of the process and satisfy:

(i) φij(t) ≥ 0 for all t ∈ R and i, j ∈ {1, . . . , d},

(ii) φij(t) = 0 for all t < 0 and i, j ∈ {1, . . . , d}, and

(iii) φij is locally integrable for all i, j ∈ {1, . . . , d}, i.e. φij ∈ L1,loc(Ω).

As in [5], we present two alternative notations of (2.4). The first is the more compact convolutional

notation:

λ(t) = µ+ Φ ∗ dN t, (2.5)

where λ = (λi)i∈{1,...,d}, µ = (µi)i∈{1,...,d}, Φ = (φij)i,j∈{1,...,d}, and ∗ corresponds to matrix multi-

plication in which ordinary products are replaced by convolutions. Secondly, we can consider (2.4) in

terms of event times: if we take tj,r to be the time of the jth event of type r, equation (2.4) becomes

λi(t) = µi +
d∑
j=1

∑
tj,r≤t

φij(t− tj,r).

In order to ensure stationarity of the processes defined in Definition 2.1.5, we have the following

well-known stability condition (Proposition 2.1 in [6]):

Proposition 2.1.3. LetK be the matrix defined by

K :=

∫ ∞
0

Φ(t)dt =

(∫ ∞
0

φij(t)dt

)
1≤i,j≤d

. (2.6)

If K has a spectral radius strictly smaller than one, then N has stationary increments.
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When this condition is satisfied, we have another useful result (Proposition 2.2 in [6]):

Proposition 2.1.4. The average intensity vector Λ = (Λ1, . . . ,Λd) := (E[λ1(t)], . . . ,E[λd(t)]) of N

satisfies

Λ = (Id−K)−1µ,

where µ = (µ1, . . . , µd).

An alternative description of the Hawkes process as a cluster process was offered in [20]: the arrival

times of the process are interpreted as the arrival of migrating individuals and the birth of new individuals

of type i ∈ {1, . . . , d} in a population. Migrants of type i arrive according to a Poisson process with

intensity µi. Each individual can give birth to children of all other types. Individuals of type j who

were born (or migrated into the population) at time t give birth to children of type i according to a

non-homogeneous Poisson distribution with rate φij(· − t). This representation of the Hawkes process

allows for the following interpretation of its parameters:

(i)
∫∞

0 φij(t)dt is the average number of children of type i that an individual of type j will give birth

to, and

(ii) Λi
Λj

∫∞
0 φij(t)dt is the proportion of individuals of type i whose parent is of type j.

In this dissertation, we will focus on the Hawkes process in its simplest form, i.e. with kernel functions

of the form

φij(t) = αije
−βij(t).

In this case, we call N(t) an exponential Hawkes process and the process (N(t), λ(t)) is a Markov

process (see Proposition 2 in [5]). We will also follow [33] and extend this process by allowing the

exogenous intensity to depend on a cádlág state process q(t), so we consider a counting process N =

(N1, . . . , Nd) with conditional intensity

λi(t) = µi(q(t
−)) +

d∑
j=1

∫ t

0
αije

−βij(t−s)dNj,s. (2.7)

2.2 Parameter Estimation

When using a Hawkes process to model event times, we will estimate parameters using maximum likeli-

hood estimation (MLE). The log-likelihood function L(θ) of a Hawkes process is given by the following

theorem (Theorem 7.3.III in [15]):

Theorem 2.2.1. Let t = (tk, ek)k∈{1,...,n}, n ∈ N, be a realisation of a d-dimensional Hawkes process

N = (N1, . . . , Nd) on the interval [0, T ], for some T > 0. Here t1 < t2 < · · · < tn and ek ∈
{1, . . . , d}, for k ∈ {1, . . . , n}. Then the log-likelihood function of the Hawkes process is given by

L(t|θ) =

d∑
i=1

Li(t|θ), where Li(t|θ) =

∫ T

0
log(λi(t, θ|Ft))dN i

t −
∫ T

0
λi(t, θ|Ft)dt. (2.8)
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Here θ represents the set of parameters and λi is the intensity function of the ith component of N.

In the case of state-dependent exponential Hawkes processes with conditional intensity given by

(2.7), the likelihood function reduces to

L(t|θ) =

d∑
i=1

∫ T

0
log

µi(q(t−)) +

d∑
j=1

∫ t

0
αije

−βij(t−s)dNj,s

 dN i
t

−
d∑
i=1

∫ T

0

µi(q(t−)) +
d∑
j=1

∫ t

0
αije

−βij(t−s)dNj,s

 dt

=

d∑
i=1

N i∑
k=1

log

µi(q(ti,−k )) +

d∑
j=1

∑
til<t

j
k

αije
−βij(tik−t

j
l )


−

d∑
i=1

∫ T

0

µi(q(t−)) +

d∑
j=1

∑
til<t

αije
−βij(t−tjl )

 dt.

(2.9)

Here, N i denotes the total number of events of type i that occur in the interval [0, T ] and tik denotes the

kth event of type i. We will optimise this function to obtain the maximum likelihood estimates of the

parameters. To do this, we will also need to calculate the gradients of this function with respect to each

of these parameters:

∂L

∂µi(q)
=

N i∑
k=1

1{q(ti,−k )= q}

µi(q(t
i,−
k )) +

∑d
j=1

∑
til<t

j
k
αije

−βij(tik−t
j
l )
−
∫ T

0
1{q(ti,−k )= q}dt, (2.10)

∂L

∂αij
=

N i∑
k=1

∑
til<t

j
k
e−βij(tik−t

j
l )

µi(q(t
i,−
k )) +

∑d
j=1

∑
til<t

j
k
αije

−βij(tik−t
j
l )
−
∫ T

0

∑
til<t

e−βij(t−tjl )dt, and (2.11)

∂L

∂βij
=

N i∑
k=1

−αij(tik − t
j
l )
∑

til<t
j
k
e−βij(tik−t

j
l )

µi(q(t
i,−
k )) +

∑d
j=1

∑
til<t

j
k
αije

−βij(tik−t
j
l )

+

∫ T

0

∑
til<t

αij(t− tjl )e
−βij(t−tjl )dt. (2.12)

The following theorem (Theorem 7.4.VI in [15]) forms the basis of one of our assessment of how well

the estimated model fits the data:

Theorem 2.2.2. Let (ti)i∈N be an unbounded, increasing sequence of time points in R+. Let N be a

simple point process with compensator Λ(t) (as defined in (2.1)) such that Λ(t)→∞ as t→∞, almost

surely. Then, with probability one, the transformed sequence (τi = Λ(ti)) is a realization of a unit-rate

Poisson process if, and only if, the original sequence (ti) is a realization from the point process defined

by Λ(t).

In particular, for a d-dimensional exponential Hawkes process with state-dependent exogenous in-

tensities, we have the following corollary (Proposition 3.2.2 in [9]).
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Corollary 2.2.3. Let (N1, . . . , Nd) be a d-dimensional Hawkes process with intensities λi defined by

(2.7) for each i ∈ {1, . . . , d}. Let tik denote the arrival time of the kth event of type i. Then the sequences

(τ ik)k∈N defined by

τ ik = Λ(tik)− Λ(tik−1)

=

∫ tik

tik−1

λi(s)ds

=

∫ tik

tik−1

µi(q(s−)) +
d∑
j=1

∑
tjl<s

αije
−βij(s−tjl )

 ds

(2.13)

are independent sequences of i.i.d. exponential random variables with mean 1.

2.3 A Scaling Limit

In Section 3.2.2, we will consider a scaling limit of a limit order book model driven by a state-dependent

exponential Hawkes process. We will make use of the technical results presented in this section.

We consider a d-dimensional process N = (N1
t , . . . , N

d
t )t≥0 with intensity defined by (2.7). We

extend the results of [4] to include the state dependence of the exogenous drift in (2.7). For completeness,

the proofs of these theorems are in included in Appendix A.1, but only minor modifications are needed to

include the state-dependent drift. This is because the state dependence is included only in the exogenous

intensity and not in the kernel functions. A similar result can also be found in [3].

Let

µ̂ = [µ̂1, . . . , µ̂d]
T := E(µ) = [E(µ1), . . . , E(µd)]

T . (2.14)

We let the matrices Φ and K be as defined in (2.5) and (2.6), respectively. In what follows, we will

also assume that the conditions in Proposition 2.1.3 are satisfied, i.e. that the spectral radius ofK is less

than one.

Under these conditions, we have the following Law of Large Numbers, a slight adaptation of Theo-

rem 1 in [4]:

Theorem 2.3.1. In the setting described above, Nt ∈ L2(P) for all t ≥ 0 and

sup
t∈[0,1]

||n−1Nnt − t(Id−K)−1µ̂|| → 0 as n→∞

almost surely and in L2(P).

We also have the following Functional Central Limit Theorem (Corollary 1 in [4]):

Theorem 2.3.2. The re-scaled process

√
n

(
1

n
Nnt − t(Id−K)−1µ̂

)
, t ∈ [0, 1]
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converges in law for the Skorokhod topology to

(Id−K)−1Σ
1
2Wt, t ∈ [0, 1],

as n → ∞, where (Wt)t∈[0,1] = (W 1
t , . . . ,W

d
t )t∈[0,1] is a standard d-dimensional Brownian motion

and Σ is the diagonal matrix defined by

Σii = ((Id−K)−1µ̂)i. (2.15)
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Section 3

Limit Order Books

In this section, we will introduce limit order books and formulate our model for the dynamics of the

limit order book.

3.1 Preliminaries

We begin by introducing limit order books and presenting the mathematical framework that we will use

to describe the limit order book. For more details, we refer the reader to [17].

Limit order books are the mechanism for matching buyers and sellers in an order-driven market. In

a quote-driven market, market makers publish prices at which they are willing to buy or sell a traded

asset. These are the only prices available to traders who wish to buy or sell the asset, so one can think

of a market maker as a liquidity provider. The market maker makes a profit by charging a premium for

this provision. In an order driven market, on the other hand, each trader is able to post limit orders. This

increase in flexibility for the trader means that order-driven markets are becoming increasingly popular.

Definition 3.1.1. A buy (resp. sell) limit order submitted at time t with price p and size ω is a commit-

ment to sell (resp. buy) up to ω units of a traded asset at a price no less (resp. no more) than p.

For a given limit order book, the units of price and order size are known as the tick and lot size,

respectively. We denote the tick size by θ and the lot size by σ, and together we call these the resolution

parameters of the book. All limit orders must have a size that is an integer multiple of the σ and a price

specified to the accuracy of θ.

When a buy (resp. sell) limit order is posted, the book’s trade matching algorithm determines

whether there is a pre-existing sell (resp. buy) limit order already on the book to which it can be matched.

If so, the orders are matched. Orders that are immediately matched to a limit order are known as market

orders. If the order cannot be matched, it becomes active and is recorded in the limit order book until it

is matched or cancelled. The instruction to cancel an existing limit order is called a cancellation order.

This leads us to our formal definition of the limit order book:

Definition 3.1.2. The limit order book L(t) is the collection of all active limit orders in a market at time

t.

10



To fully characterise the state of the limit order book at time t, we also need to specify the best bid

and best ask prices. The best bid (resp. best ask) price, b(t) (resp. a(t)), is the highest (resp. lowest)

price at which there is an active buy (resp. sell) limit order at time t. The average of these two prices

is known as the mid, m(t), and the difference between them is called the bid/ask spread, denoted s(t).

Note that the mid is not necessarily a multiple of the tick size, θ, but the spread is.

Typically, we partition the limit order book into the set of active buy orders, B(t), and active sell

orders, S(t). Throughout, we will also refer to B(t) and S(t) as the bid and ask sides of the book,

respectively. Together with the discretisation achieved by imposing a tick size, this leads to a natural

interpretation of a limit order book as a set of queues, each consisting of active buy or sell limit orders

at a given price. The queues can be characterised by the distance of the given price from the best bid/ask

price (depending on the side of the book). We define the ith queue on the bid (resp. ask) side of the book

at time t to be the set of active buy (resp. sell) limit orders with price p = b(t)− iθ (resp. p = a(t)+ iθ).

We will denote the number of active buy (resp. sell) limit orders in the ith queue on the bid (resp. ask)

side of the book at time t by Xb
i,t (resp. Xa

i,t).

In a limit order book, the price evolution depends on the way orders are matched. Consider a buy

(resp. sell) limit order x placed immediately after time t with price p and size ω. The arrival of this order

can affect the state of the limit order book in several ways:

(i) If p ≤ b(t) (resp. p ≥ a(t)), then x is a limit order that becomes active on arrival and does not

change the price.

(ii) If p > b(t) (resp. p < a(t)), then x is a limit order that becomes active on arrival. The price

change caused by this order is b(t+) = p (resp. a(t+) = p).

(iii) If p ≥ a(t) (resp. p ≤ b(t)), then x is a market order and is executed immediately upon arrival.

Whenever such an order arrives, it is matched to the price of an active order, even if this is not the

same as the price of the incoming order. Futhermore, whether this order induces a price change

depends on the size of the order: the bid (resp. ask) price upon arrival of a sell (resp. buy) market

order is b(t+) = max (p, i∗θ), where

i∗ = arg max
i

i∑
k=0

Xb
k,t > ω

(resp. a(t+) = max (p, i∗θ), where i∗ = arg maxi
∑i

k=0X
a
k,t > ω).

3.2 Limit Order Book Dynamics in a Static Setting

3.2.1 The Microscopic Order Book Model

We begin by specifying the dynamics of the microscopic (discrete volume and price) order book model

in a static setting, i.e. we give the discrete dynamics of the order book model between price changes,
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as was done in [18] and [24]. We take m ∈ R to be the fixed mid and we adopt the convention that

the spread is constantly equal to two ticks. As in [18], we work on a relative price grid given by

{0, 1, . . . , N}, for some N ∈ N, where the ith point on the grid refers to the point i ticks away from the

mid, m. Note the difference between this and the definition of the ith queue in the previous section. We

change this definition without losing the convenience of the definition in the previous section as we are

now assuming the spread is always two ticks. For each n ∈ N, we consider two (N − 1)-dimensional

processes, Zbn = (Zb,1n , . . . , Zb,N−1
n ) and Zan = (Za,1n , . . . , Za,N−1

n ), taking values in ZN−1
+ , where Zb,in

(resp. Za,in ) represents the number of outstanding buy (resp. sell) limit orders at price m − i (resp.

m + i). We assume that order and cancellation sizes are always one. At a given price point on the bid

(resp. ask) side of the book, the number of outstanding buy (resp. sell) limit orders can increase with the

arrival of a buy (resp. sell) limit order and decrease with the arrival of a sell (resp. buy) market order or

the cancellation of an existing buy (resp. sell) limit order.

In this model, we will extend the model in [18] by assuming that the limit orders and cancellation/-

market orders arrive according to a 2(N−1)-dimensional, state-dependent exponential Hawkes process,

instead of independent, state-dependent Poisson processes. On the bid side of the book, we will consider

the process

Nb,n(t) = (N1
b,n,i(t), N

2
b,n,i(t), . . . , N

1
b,n,N−1(t), N2

b,n,N−1(t)),

where N1
b,n,j(t), and N2

b,n,j(t) count the arrival of limit orders and cancellation/market orders at price

m − j, respectively. For a fixed price level, the process will be both self-exciting and cross-exciting.

Between queues, we allow cancellation orders to excite limit orders in the adjacent queue closer to the

mid. For example, on the bid side of the book, the arrival of a cancellation order at level m− (i+1) will

excite the arrival of limit orders at level m − i. The inter-queue interaction on the ask side of the book

is defined analogously. The kernel functions will be zero for all other interactions. This is intended to

capture the effects of traders re-positioning their orders, i.e. cancelling an order in one queue and quickly

placing another order in the adjacent queue closer to the mid. We assume all other cross-exciting effects

between the adjacent queues are zero. In this setup, the dynamics of the bid side of the book can be

described as follows:

For i ∈ {1, 2, . . . , N − 1}, let ei = (a1, a2, . . . , aN−1) be such that aj = 0 if j 6= i and ai = 1,

and define e0 = eN = 0. For each i, let N1
b,n,i and N2

b,n,i denote the arrival of limit orders and

market/cancellation orders at the ith queue, respectively. Let N3
b,n,i and N4

b,n,i denote the denote the

arrival of limit orders and market/cancellation orders at the (i+ 1)th queue, respectively. Note that this

means that N1
b,n,i = N3

b,n,i+1, but we adopt this notation for clarity below. Using our notation from

Section 2.1, let αijb,n,ie
−βij

b,n,i(t) denote the kernel function responsible for the exciting effect that the

process N j
b,n,i has on N i

b,n,i. Then, for i ∈ {1, 2, . . . , N − 1},
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(i) Zbn → Zbn + ei according to the Hawkes process N1
b,n,i(t) with intensity

λ1
b,n,i(t) = µ1

b,n,i(Z
b,i
n ) +

∫ t

0
α11
b,n,ie

−β11
b,n,i(t−s)dN1

b,n,i(s) +

∫ t

0
α12
b,n,ie

−β12
b,n,i(t−s)dN2

b,n,i(s)

+ intt0α
14
b,n,ie

−β14
b,n,i(t−s)dN4

b,n,i(s),

(ii) Zbn → Zbn − ei according to the Hawkes process N2
b,n,i(t) with intensity

λ2
b,n,i(t) =

(
µ2
b,n,i(Z

b,i
n ) +

∫ t

0
α21
b,n,ie

−β21
b,n,i(t−s)dN1

b,n,i(s) +

∫ t

0
α22
b,n,ie

−β22
b,n,i(t−s)dN2

b,n,i(s)

)
1{Zb,i

n >0},

The dynamics for the ask side of the book are defined analogously.

3.2.2 Scaling Limit of the Static Microscopic Model

As in [18], we accelerate time by a factor of n and divide volumes by
√
n to consider the limits of the

1√
n
NN−1-valued processes

Z̃bn(t) =
Zbn(nt)√

n
and Z̃an(t) =

Zan(nt)√
n

.

The limits of these processes will define our mesoscopic (continuous volume and discrete price) order

book model and will take values in [0,∞)N−1. In order to obtain convergence, we need to make the

following assumptions:

(i) For k ∈ {a, b}, n ∈ N and i ∈ {1, . . . , N − 1}, there exists a constant Ci,k such that

σ2
1,i,k,n − σ2

2,i,k,n =
Ci,k√
n
, (3.1)

where expressions for σ1,i,k,n and σ2,i,k,n are given in the proof of Theorem 3.2.1.

(ii) For k ∈ {a, b}, there exists a R+ valued random variable Xk(0) such that Z̃kn(0) converges to

Xk(0) in law as n→∞.

Theorem 3.2.1. The 1√
n
NN−1 × 1√

n
NN−1 valued process (Z̃bn, Z̃

a
n) converges weakly in

M
(
D([0,∞);RN−1)× D([0,∞);RN−1)

)
to the unique [0,∞)N−1×[0,∞)N−1-valued strong Markov

diffusion process (Xb, Xa) which satisfies the following system of reflected SDEs:

dXb,i
t = Ci,bdt+ ζb,idW b,i

t + dηb,it ,

dXa,i
t = Ci,adt+ ζa,idW a,i

t + dηa,it ,

for i ∈ {1, . . . , N − 1} with the pinning conditions Xk,0 = Xk,N = 0, where W k,i, k ∈ {a, b},
are independent Brownian motions and for k ∈ {a, b} fixed, 〈W k,i,W k,j〉t = ρk,jt for each i, j ∈
{1, . . . , N − 1}. The ηk,i are reflection measures which maintain the positivity of Xk,i.
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Proof. We begin by considering the general M -dimensional Hawkes process N = (N1, N2, . . . , NM ),

where M is a positive, even integer, and for each i ∈ {1, . . . M}, N i has conditional intensity

λi(t) = µi(q(t
−)) +

∫ t

0

M∑
j=1

αije−β
ij(t−s)dNj(s).

Assume that, for i ∈ {1, 3, . . . ,M − 3}, αij = 0 for all j /∈ {i, i+ 1, i+ 3}, and for i ∈ {2, 4, . . . ,M},
αij = 0 whenever j /∈ {i− 1, i}. Let Z be the M

2 -dimensional process defined by

Zj(t) = N2j−1(t)−N2j(t), for j ∈
{

1, . . . ,
M

2

}
,

and letK, µ̂, and Σ be defined as in equations (2.6), (2.14), and (2.15), respectively, i.e.

K :=

∫ ∞
0

Φ(t)dt =

(∫ ∞
0

φij(t)dt

)
1≤i,j≤M

,

µ̂ = [µ̂1, . . . µ̂d]
T := E(µ) = [E(µ1), . . . , E(µM )]T , and

Σii = ((Id−K)−1µ̂)i.

From Theorem 2.3.2, we know that the process 1√
n
Xtn :=

√
n
(

1
nNnt − t(Id−K)−1µ̂

)
converges in

law to Yt := (Id −K)−1Σ
1
2Wt, where Wt = (W 1

t , . . . ,W
M
t ) is a standard M -dimensional Brow-

nian motion. From this and Condition (3.1), it follows that the M
2 -dimensional process ( 1√

n
Z1
tn −

√
nt(σ2

1 − σ2
2), 1√

n
Z2
tn−
√
nt(σ2

3 − σ2
4), . . . , 1√

n
Z

M
2
tn −

√
nt(σ2

M−1− σ2
M )) converges in distribution to

(ζ1W̃
1
t , . . . , ζM

2
W̃

M
2
t ), where 〈W̃ i, W̃ j〉t = ρjkt, j, k ∈ {1, . . . , M2 }. Expressions for the σj’s, ζj’s, and

ρjk’s in the four-dimensional case can be found in Appendix A.2.

Taking M = 2(N − 1) and N j and N j+1 to represent the arrival of limit and market/cancellation

orders at the ( j+1
2 )th queue of the bid/ask side of the limit order book, respectively, we have convergence

of Z̃bn(t) (resp.Z̃an(t)) to Xb(t) (resp. Xa). The reflection measure is a result of the indicator function in

the arrival rate of market/cancellation orders which ensures that whenever the volume at a given queue

is zero, the next order to arrive will be a limit order.

Remark 3.2.2 (The Macroscopic Model in a Static Setting). At this point in [18], the tick size is also

made to tend to zero and an SPDE model is derived. Given the inherent dependence structure in the

mesoscopic model proposed in Theorem 3.2.1, the theory used in [18] is not applicable in this case, and

we do not find the macroscopic limit in this case.

3.3 Limit Order Book Dynamics in a Dynamic Setting

In this section, we present the mechanism for incorporating price movements into the models in Section

3.2. This section follows the methodology in Section 2.3 of [18] closely. Note that the same idea is used

in [24] to include price dynamics in the model.

In general, a price change can be triggered by one of the following three events:
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(i) The placement of a limit order inside the bid-ask spread. This will cause the price to decrease/in-

crease if it is a sell/buy limit order placed below/above the best ask/bid price.

(ii) The cancellation of the last remaining limit order in the first queue on either the bid/ask side of

the book. The cancellation of such a sell/buy limit order will cause the price to increase/decrease.

(iii) The execution of the last remaining limit order at either the best bid/ask price. This corresponds to

the placement of a sell/buy market order at the best bid/ask price that consumes all of the available

liquidity at that price and has the same effect on the price as the cancellation of the limit order.

3.3.1 The Microscopic Model

We assume that price changes occur according to independent, positive exponential rates, and we allow

these rates to depend on the current profile of the book and the mid. In [18], an example is made of

the case where these rates depend on the volume imbalance on either side of the book. In this case,

relatively more bid limit orders will encourage a price increase, and relatively more sell limit orders will

encourage a decrease in price.

For each n ∈ N, m ∈ R, we denote the rate of upward and downward price changes by θnu,m and

θnd,m, respectively, where θnk,m : NN−1 × NN−1 → R+, k ∈ {u, d}. We assume that the price changes

are of a fixed, positive amount which we denote by ε.We also define the functionsRn : NN−1×NN−1×
{u, d} → M(NN−1 × NN−1). These determine the distribution of the profiles of the bid and ask side

of the book following a price change. The functions R will be allowed to depend on the profile of the

book at the time of the price change and the direction of the price change.

To construct the dynamic process, we need to introduce the two sequences (Y i
n,u)i∈N and (Y i

n,d)i∈N

of i.i.d. exponential random variables with mean one. These sequences are independent of one another

and of the counting processes that drive the arrival of orders. Now, let Zbn,1 and Zan,1 be processes

evolving according to the dynamics of the nth static microscopic order book model given in Section

3.2.1. Let Zbn,1(0) and Zan,1(0) be the initial profiles of these processes, respectively, and let m1
n be the

fixed initial mid for this model. Consider the stopping times τ in,u and τ in,d defined by

τ1
n,u := inf

{
t ≥ 0

∣∣∣ ∫ t

0
θnu,m1

n
(Zbn,1(s), Zan,1(s))ds ≥ Y 1

n,u

}
, and

τ1
n,d := inf

{
t ≥ 0

∣∣∣ ∫ t

0
θnd,m1

n
(Zbn,1(s), Zan,1(s))ds ≥ Y 1

n,d

}
.

For k ∈ {u, d}, τ in,k can be interpreted as an exponential waiting time with arrival rate at time t deter-

mined by θnk,m(Zbn,1(t), Zan,1(t)). Let τ1
n := τ1

n,d ∧ τ1
n,u. Assume a price change is triggered when the

first of the exponential waiting times is met, i.e. at time τ1
n . If τ1

n = τ1
n,u, then the price change is positive

and we set m2
n := m1

n + ε. Similarly, when τ1
n = τ1

n,u, the price change is negative and m2
n := m1

n − ε.
We then define (Zbn,2, Z

a
n,2) to be the process evolving according to the dynamics of the nth static micro-

scopic order book model with fixed mid m2
n. The initial profile of this model is determined by the law
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Rn(Zbn,1(τ1
n), Zan,1(τ1

n), u) if the price change at time τ1
n was positive and Rn(Zbn,1(τ1

n), Zan,1(τ1
n), d) if

the price change at time τ1
n was negative. We assume that, given Zbn,1(τ1

n), Zan,1(τ1
n), the direction of

the price change at time τ1
n and the mid m2

n, the processes Zbn,2 and Zan,2 are independent of the past of

the order book. To determine the dynamics of the order book after the M th price change, we proceed

inductively as follows:

Given (Zbn,i)i∈{1,...,M}, (Zan,i)i∈{1,...,M}, (τ in)i∈{1,...,M−1}, and (mi
n)i∈{1,...,M}, we define

τMn,u := inf
{
t ≥ 0

∣∣∣ ∫ t

0
θnu,mM

n
(Zbn,M (s), Zan,M (s))ds ≥ YM

n,u

}
,

τMn,d := inf
{
t ≥ 0

∣∣∣ ∫ t

0
θnd,mM

n
(Zbn,M (s), Zan,M (s))ds ≥ YM

n,d

}
, and

τMn = τMn,u ∧ τMn,d. If τMn = τMn,u, let mM+1
n = mM

n + ε and if τMn = τMn,d, let mM+1
n = mM

n − ε.
The dynamics of the order book after theM th price change are then given by (Zbn,M+1, Z

a
n,M+1), which

evolve according to our nth microscopic model with mid mM+1
n . If the M th price change was positive,

the initial profile of this process has law Rn(Zbn,M (τ1
n), Zan,M (τMn ), u), and if it was negative, the initial

profile has lawRn(Zbn,M (τMn ), Zan,M (τMn ), d).Again, given Zbn,M (τMn ), Zan,M (τMn ), the direction of the

price change at time τMn , and the mid mM+1
n , the processes Zbn,M+1 and Zan,M+1 are independent of the

past of the order book.

Putting all of these processes together, we get that our nth dynamic microscopic order book model

can be described by the NN−1 × NN−1 × R valued process (Ẑbn(t), Ẑan(t),mn(t)). Here,

Ẑbn(t) =
∑
i∈N

Zbn,i

t− i−1∑
j=1

τ jn

1{i−1∑
j=1

τ jn≤t<
i∑

j=1
τ jn

},

and

Ẑan(t) =
∑
i∈N

Zan,i

t− i−1∑
j=1

τ jn

1{i−1∑
j=1

τ jn≤t<
i∑

j=1
τ jn

}

describe the evolution of the bid and ask sides of the book through time, respectively, and

mn(t) =
∑
i∈N

mi
n1

{
i−1∑
j=1

τ jn≤t<
i∑

j=1
τ jn

}

describes the evolution of the mid through time.

3.3.2 The Scaling Limit in a Dynamic Setting

In this section, we define the dynamic analogy to our mesoscopic model in Section 3.2.2 and we show

that our dynamic microscopic model converges to it. The dynamic mesoscopic model is defined in

almost the same way as the dynamic microscopic model. Upward and downward price movements

occur according to positive exponential rates θu,m and θd,m, respectively. In this case, for k ∈ {u, d}, the

functions θk,m : (R+)N−1× (R+)N−1 → R+, and they are allowed to depend on the profile of the book

16



and the current mid. Furthermore, we assume that these functions are continuous, uniformly bounded

over m, and that there is some c > 0 such that θk,m ≥ c. The dynamics of the order book between

price changes are determined by the static mesoscopic model in Section 3.2.1. In this case, the law of

the order book profile after a price change is determined by the continuous function R : (R+)N−1 ×
(R+)N−1 × {u, d} → M((R+)N−1 × (R+)N−1), and we equip the spaceM((R+)N−1 × (R+)N−1)

with the topology of weak convergence.

Let k ∈ {u, d} and define Pn : NN−1 × NN−1 → (R+)N−1 × (R+)N−1 by

(
(v1

1, . . . , v
N−1
1 ), (v1

2, . . . , v
N−1
2 )

)
7→

((
v1

1√
n
, . . . ,

vN−1
1√
n

)
,

(
v1

2√
n
, . . . ,

vN−1
2√
n

))
.

We assume that the functions defined above can be approximated by their microscopic counterparts in

the following ways:

(i) For v1, v2 ∈ NN−1, and u1, u1 ∈ (R+)N−1 × (R+)N−1,∣∣∣nθnk,m(v1, v2)− θk,m
∣∣∣ ≤ r (||Pn((v1, v2)− (u1, u2))||) ,

where limx→0 r(x) = 0.

(ii) If (vn1 , v
n
2 ) is a sequence in NN−1 × NN−1 such that Pn((vn1 , v

n
2 ))→ (u1, u2), then

Rn(vn1 , v
n
2 , k) ◦ P−1

n → R(u1, u2, k)

in law inM((R+)N−1 × (R+)N−1).

Now, define the processes Xb
i , X

a
i , the i.i.d sequences (Y i

u) and (Y i
d ), the stopping times τ iu, τ

i
d, τ

i

and the price sequencemi as we did in Section 3.3.1. Note that, in this case, our sequences of exponential

random variables do not depend on n.We then have the dynamic mesoscopic model (X̂b(t), X̂a(t),m(t)),

where

X̂b(t) =
∑
i∈N

Xb
i

t− i−1∑
j=1

τ jn

1{i−1∑
j=1

τ jn≤t<
i∑

j=1
τ jn

},

X̂a(t) =
∑
i∈N

Xa
i

t− i−1∑
j=1

τ jn

1{i−1∑
j=1

τ jn≤t<
i∑

j=1
τ jn

},
and

m(t) =
∑
i∈N

mi
1{i−1∑

j=1
τ jn≤t<

i∑
j=1

τ jn

}.
We can then use Theorem 2.4 in [18] to obtain convergence of our re-scaled dynamic microscopic model

to this mesoscopic model:
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Theorem 3.3.1. Suppose that(
Zbn,1(0)
√
n

,
Zan,1(0)
√
n

)
→
(
Xb

1(0), Xa
1 (0)

)
weakly inM((R+)N−1 × (R+)N−1). For each n ∈ N, let (Ẑbn(t), Ẑan(t),mn(t)) be a dynamic micro-

scopic model with initial data (
Zbn,1(0)
√
n

,
Zan,1(0)
√
n

,m1

)
,

and let (X̂b(t), X̂a(t),m(t)) be the dynamic mesoscopic model with initial data
(
Xb

1(0), Xa
1 (0),m1

)
.

Then (
Ẑbn,1(nt)
√
n

,
Ẑan,1(nt)
√
n

,mn(nt)

)
→
(
X̂b

1(t), X̂a
1 (t),m(t)

)
weakly inM

(
D([0,∞),RN−1)× D([0,∞),RN−1)× D([0,∞),R)

)
.
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Section 4

Numerical Investigation

4.1 Data Set Description

We will use data from LOBSTER (Limit Order Book System, The Efficient Reconstructor), a database

tool developed by frischedaten UG [29]. LOBSTER reconstructs limit order book data for all NASDAQ

traded stocks from NASDAQ’s Historical TotalView-ITCH files from June 27 2007 until the day before

yesterday. The reconstructed data consists of two files for each stock: the message file and the order

book file. The order book file contains snapshots of the state of the order book up to a chosen number

of occupied levels, and the message file contains information about the type of event that changes the

state of the order book at a given time within the specified price range: it records the placement and

cancellation of limit orders, the execution of both hidden and visible limit orders, and any trading halts

and cross trades that occur throughout the day. Note that the execution of a buy (resp. sell) limit order

corresponds to a sell (resp. buy) market order. All events are timestamped according to seconds after

midnight, with the available decimal precision ranging from milliseconds to nanoseconds depending on

the requested period. The kth row of the message book corresponds to the event that causes the limit

order book to change from the state recorded in the (k − 1)th row of the order book file to the state

recorded in the kth row.

We will consider the data from the SPDR Trust Series I limit order book up to the 50 best occupied

levels on each side of the book, between 11:00:00.000 and 12:00:00.000 EST, on 25 September 2019.

The tick size for this data set is 1 cent and the time stamps have nanosecond decimal precision.

This data set does not contain any events corresponding to trading halts or cross trades, and we

choose to omit the execution of hidden limit orders, as these have no impact on the visible limit order

book and only account for a very small proportion, 0.1923%, of the order book events.

There are also several instances in which multiple order book events share the same timestamp. This

happens in two cases: in the first case, multiple limit order executions in the same queue on the same

side of the book share a timestamp. We interpret this as a single market order fulfilling multiple limit

orders, and we reduce this to one limit order execution at the given price level and time stamp, with
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order size equal to the sum of the sizes of the orders sharing the timestamp. The second case is the

quick succession of the cancellation of limit orders at one price level and the placement/execution of

limit orders of the same size at an adjacent level or execution of limit orders at the same price level. As

this is an effect we would like to capture in our modelling, we edit the timestamps of these orders by

spreading them out evenly across their common nanosecond.

4.2 Modelling event arrival times using Hawkes Processes

The use of the Hawkes process to model the arrival time of limit order book events has been widely

explored in the literature. In this section, we will give some empirical evidence for the use of Hawkes

processes to model the arrival of events that increase liquidity (limit orders) and events that decrease

liquidity (market/cancellation orders).

Figure 4.1 illustrates the clustering effect observed in orders of the same type. The red vertical

lines in Figure 4.1(a) correspond to the arrival times of market/cancellation orders placed at the best

bid price, where the blue vertical lines correspond to the arrival times of a simulated homogeneous

Poisson process. The rate of the Poisson process is chosen so that the expected number of Poisson

arrivals is equal to the number of order book events of the appropriate type. The Poisson observations are

generated using the tick python package [7]. The red and blue step functions correspond to the number

of market/cancellation and Poisson events per second, respectively. Figure 4.1(b) can be understood

analogously, replacing market/cancellation orders at the best bid price with limit orders at the best ask

price. It is clear in both cases that the Poisson arrivals are more evenly spread out across the interval and

that there is much less fluctuation in the number of arrivals per second. This clustering is captured by

the self-excitation component of Hawkes processes.

(a) Best Bid Price (b) Best Ask Price

Figure 4.1: Arrival times of orders and number of orders per second.

In Section 3.2.1, we hypothesised that, over and above the self-excitation observed in Figure 4.1,

the arrival of limit orders at a given price level depends on the arrival of market/cancellation orders at

the same price level and one tick further away from the best bid/ask price. Furthermore, we hypoth-

esised that the arrival of a market/cancellation order at a given price level is excited by the arrival of
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both market/cancellation orders and limit orders at that level. In order to establish if there is cross-

excitation between order book events of two different types (or across two different levels), we consider

the empirical distributions of:

(i) the inter-arrival times of all events of the two different types, and

(ii) the time between the arrival of an event of the first type and the subsequent event of the second

type.

Figure 4.3(a) (resp. 4.2(b)) compares these empirical distributions for limit orders at the best bid and

market/cancellation orders at the best bid (resp. market/cancellation orders one tick away from the

best bid). On the other hand, Figure 4.2(a) (resp. 4.3(b)) compares the empirical distributions for

market/cancellation orders at the best bid and limit orders at the best bid (resp. market/cancellation

orders one tick away from the best bid). In both Figures 4.2 and 4.3, the blue line is the empirical

distribution of the inter-arrival times of all events under consideration and the orange line is the empirical

distribution of the time between the arrival of an event of the first type and the subsequent event of the

other type. The significant increase in the empirical probability of short time intervals in Figures 4.2(a),

4.2(b), 4.3(a), as well as the lack of such an increase in Figure 4.3(b) shows that, in the case of the best

bid price level on 25 September 2019, these hypotheses are empirically justified. Similar observations

can be made for the ask side of the book and for deeper levels of the order book.

(a) Market/cancellation orders at the
best bid price

(b) Market/cancellation orders one tick away
from the best bid price

Figure 4.2: Comparison of empirical distributions for limit orders at the best bid price.

4.3 Parameter Estimation

Based on the empirical observations in Section 4.2, we fit the Hawkes processes described in Section

3.2.1 to our data set.

To demonstrate the validity of the assumptions made in Section 3.2.1, we will describe the estimation

procedure and present the results for the first three levels of the book. We consider the arrival times of
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(a) Limit orders at the best bid price (b) Market/cancellation orders one tick away
from the best bid price

Figure 4.3: Comparison of empirical distributions for market/cancellation orders at the best bid.

limit orders and their cancellations and executions at the first three levels on each side of the book. For

each event time, we determine the volume at the given level of the book the instant before the event

takes place. In order to reduce the number of parameters in our estimation, we then approximate these

volumes by

q(t−) =

⌈
ui(t−)

100

⌉
, i ∈ {0, 1, 2},

where u0(t), u1(t), and u2(t) are the time t volumes at the best bid/ask, one tick away from the best

bid/ask and two ticks away from the best bid/ask, respectively. We then use the maximum likelihood

estimation procedure described in Section 2.2 to fit a state-dependent Hawkes process to the data. This

estimation procedure is similar to that used in [33], however, in this case, the parameters βij are also

estimated and not given to the model as hyper-parameters. For comparison, we will fit several counting

processes to our data:

(i) independent, state-dependent Poisson processes, which we will fit using the methodology de-

scribed in [24],

(ii) a ‘rich’ six-dimensional Hawkes process in which none of the parameters are forced to be zero,

and

(iii) the six-dimensional Hawkes process that we chose as our microscopic model in Section 3.2.

In Tables 4.1 and 4.2, we present the log-likelihood, logL, for the three models considered for the first

three queues on the bid and ask sides of the book, respectively. For each of the three models, we also

calculate the values of the Akaike Information Criterion (AIC)

AIC = 2k − 2 logL

and the Schwartz Information Criterion (BIC)

BIC = k log(n)− 2 logL,
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logL AIC BIC
Model (i) 30055.78 -58119.56 -48112.03
Model (ii) 115950.19 -229764.38 -219033.41
Model (iii) 72332.42 -142612.84 -132303.87

Table 4.1: Log-likelihood, AIC and BIC for each of the three models for the first three levels on the bid
side of the book.

logL AIC BIC
Model (i) -44310.75 89869.50 96130.39
Model (ii) 167463.30 -333534.6 -326551.30
Model (iii) 123904.24 -246500.49 -239938.60

Table 4.2: Log-likelihood, AIC and BIC for each of the three models for the first three levels on the ask
side of the book.

where k is the number of parameters in the model and n is size the of the sample.

According to these criteria, the best model is that which minimizes their respective values. It is clear

that, in both cases, Model (iii) provides a better fit than the state-dependent Poisson process according to

both the AIC and the BIC. It also has a higher log-likelihood in both cases. While Model (iii) does not

outperform the more complicated Hawkes process model, even when including a penalty for complexity,

due to its simplicity and improvement on the state-dependent Poisson process model, we are satisfied

that our assumptions in Section 3.2.1 are reasonable. In Figure 4.4, we also present the quantile-quantile

plots for each of these models for the bid side of the book. The analogous figures for the ask side of the

book can be found in Appendix B.1. These compare each of these models’ residuals with the theoretical

quantiles given by Theorem 2.2.3. It is clear from Figure 4.4 that the conclusions we reached from

comparing the AIC and BIC criteria for each of the models are supported by the residual processes of

the models. The models do not, however, provide perfect fits to the data and it would be worth exploring

the fit obtained when using more complicated kernel functions (see, for example, [6] for an example of

non-parametric kernel estimation). We also note that the spectral radius for Model (iii) when fit to the

first three queues on the bid side of the book is 0.83, and on the ask side of the book it is 0.67, so both

of the models satisfy the stability condition we have imposed throughout this paper.
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(a) Limit orders at the
best bid

(b) Market/cancellation orders
at the best bid

(c) Limit orders one tick away
from the best bid

(d) Market/cancellation orders
one tick away from the
best bid

(e) Limit orders two ticks
away from the best bid

(f) Market/cancellation orders two
ticks away from the
best bid

Figure 4.4: Quantile-Quantile Plots for various counting processes to model order arrivals at the first
three queues on the bid side of the book.

4.4 Simulating the Mesoscopic Model

In this section, we demonstrate how a straightforward implementation of the model we gave in Section

3.2 can reproduce some of the characteristics of the limit order book profile. For comparison, we will

also implement the model in [18] and remark on the differences between the two models.

4.4.1 The Model

We will implement the case where, between price movements, the bid and ask sides of the order book

(Xb and Xa, respectively) evolve according to the system of SDEs

dXb
t = Cdt+ ΣdW b

t + dηbt ,

dXa
t = Cdt+ ΣdW a

t + dηat ,

for i ∈ {1, . . . , N − 1}, where the N − 1-dimensional Brownian motions W b = (W b,1, . . . ,W b,N−1)

and W a = (W a,1, . . . ,W a,N−1) are independent of one another and have the common covariance

matrix Σ. We assume (as in [18]) that the order arrival rates depend only on the distance of the event

from the mid, and not on the state of the book at the time of the event. Note that in this case we are

working with a system of SODE’s, and our discretisation is only with respect to time as we have not

assumed a continuous state space. In [18], the order book profile evolves according to an SPDE and so

both the time and state spaces are continuous and must be discretised. While this has little impact on
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the implementation, it is worth noting the distinct difference in the underlying theoretical models. We

also assume that the drift and volatility parameters Ci and σi are the same for both sides. We make this

assumption due to symmetry of order arrival rates on the bid and ask sides of the book, a phenomenon

which is clear in this data set.

Our chosen mechanism for price changes also follows [18]: we assume that price changes are driven

by a combination of the imbalance between the volumes at the best bid and best ask prices and some

exogenous factors. To formalise this, we have that, at time t, the rate of an upward price jump will be

given by

θu(Xb(t, ·), Xa(t, ·)) = γmax

(∫ ε

0
(Xb(t, x)−Xa(t, x))ds, 0

)
+ δ, (4.1)

and the rate of a downward price jump is given by

θd(X
b(t, ·), Xa(t, ·)) = γmax

(∫ ε

0
(Xa(t, x)−Xb(t, x))ds, 0

)
+ δ. (4.2)

We also assume that, following a price change, the profiles of the book simply shift in the direction

of the price change by one tick. This idea is formalised by taking the functions R(·, ·, u) and R(·, ·, d)

defined in Section 3.3.2 to be the deterministic functions:

R(Xb, Xa, u) =


(0, Xa(i+ 1)) for i = 0,

(Xb(i− 1), Xa(i+ 1)) for i ∈ {1, . . . , N − 1},
(Xb(i− 1), 0) for i = N, and

(4.3)

R(Xb, Xa, d) =


(Xb(i+ 1), 0) for i = 0,

(Xb(i+ 1), Xa(i− 1)) for i ∈ {1, . . . , N − 1},
(0, Xa(i− 1)) for i = N.

(4.4)

We remark that, while these equations have the natural interpretation of price changes corresponding to

the depletion of available liquidity at a given level, these profiles violate the boundary conditions of the

system of SDE’s defined in Theorem 3.2.1. These equations can, however, be shown to have solutions

in C0((0, 1))+ when the initial value is positive.

4.4.2 Numerical Setup

We will use the Euler-Maruyama scheme to simulate this system of equations. We will work on a time

interval [0, T ] and discretise this interval into M evenly spaced steps 0 = t0 < t1 < · · · < tM = T,

where tj = jT/M . We will work with a systemN SDE’s for each side of the book, and we will re-scale

our discrete state space to fit into the interval [0, 1]. We will denote the simulated volume of the ith

queue on the bid (resp. ask) side of the book at the jth time step by Xb(tj , i) (resp. Xa(tj , i)) and we

will denote the simulated price process at time tj by p(tj). To simulate the pinning conditions of our

mesoscopic model, we will set Xb(tj , 0) = Xb(tj , N) = Xa(tj , 0) = Xa(tj , N).

At each time step, before updating the order book process, we determine if a price change should

occur and what the direction of this price change should be. We assume that all price changes are of one
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tick in size and that the bid-ask spread remains fixed at two ticks. In order to determine if a price change

should occur, we approximate (4.1) and (4.2) by

π+(tj) =
(

max
( γ

2N
(Xb(tj , 1)−Xa(tj , 1)), 0

)
+ δ
)
× T

M
,

and

π−(tj) =
(

max
( γ

2N
(Xa(tj , 1)−Xb(tj , 1)), 0

)
+ δ
)
× T

M
,

respectively. We will then simulate a uniform random variable on (0, 1) denoted by U(tj). The value

of U(tj) determines whether there is a price change at each time step and the functions (4.3) and (4.4)

determine how the simulated profile is updated with each price movement as follows:

(i) If U(tj) < π+(tj), then the price moves up by one tick, so we set

p(tj+1) = p(tj) +
1

N
,

Xb(tj , 0) = Xa(tj , N) = 0.

For i ∈ {1, . . . , N}, we set

Xb(tj , i) = Xb(tj , i− 1),

and for i ∈ {0, . . . , N − 1}, we set

Xa(tj , i) = Xa(tj , i+ 1).

(ii) If π+(tj) ≤ U(tj) < π+(tj) + π−(tj), the price moves down by one tick, so we set

p(tj+1) = p(tj)−
1

N
.

For i ∈ {1, . . . , N}, we set

Xa(tj , 0) = Xb(tj , N) = 0,

Xa(tj , i) = Xb(tj , i− 1),

and for i ∈ {0, . . . , N − 1}, we set

Xb(tj , i) = Xa(tj , i+ 1).

(iii) If π+(tj) + π−(tj) ≤ U(tj), then the price does not change, so we set

p(tj+1) = p(tj),

and we do not update the order book profile.
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Once we have completed this process, we calculate the profiles on each side of the book using the

Euler-Maruyama method as follows:

Xb(tj+1) = max

(
Xb(tj) +C

T

M
+

√
T

M
ΣZb

j , 0

)
,

and

Xa(tj+1) = max

(
Xa(tj) +C

T

M
+

√
T

M
ΣZa

j , 0

)
,

where Zb
j and Zb

j are (N − 1)-dimensional normal random vectors. The maximum with zero replicates

the effect of the reflection measure at each time step.

4.4.3 Parameter Estimation

In this section, we describe how we obtain estimates for the parameters of the model described above

from our data set. Throughout this section, we will denote the order volume at the ith price point below

(resp. above) the best bid (resp. ask) price of the book at the jth time-step of our observed data set by

xbj,i (resp. xaj,i). We will use the same scaling as in [18], i.e. we will measure order volumes in units

of 104 and we will measure time in minutes. Moreover, we will consider 50 queues on each side of the

book, which we will map to the interval [0, 1] i.e. the ith queue will be mapped to position i/50. Since

the ith queue of our data set corresponds to the queue i ticks away from the mid, and our tick size is 1

cent, a spatial increment of 1/50 will correspond to a price change of 1 cent.

We begin by fitting the drift and covariance estimates for our static order book dynamics. Since we

have assumed that the dynamics of the profile of the order book are independent of the price-changing

mechanism, we fit these estimates on the static intervals in our data set. Let nb (resp. na) be the

number of time intervals during which the best bid (resp. ask) price remains constant, respectively. For

each k ∈ {1, . . . , nb}, let (tb1,i, . . . , t
b
lk,i

) be the observed time steps in this static interval, where tbj,i
corresponds to the time stamp of the jth event at the ith queue on the bid side of the book, and let

(xb1,i, . . . , x
b
lk,i

) denote the corresponding volumes i ticks from the mid.

To estimate the drift, we calculate the least squares estimate for each queue on each side of the book

(as described in Section 10.3.1 in [30]). The procedure is as follows: for the ith queue on the bid side of

the book, the least squares estimate of Ci is given by

Ĉbi =

∑
j(x

b
j,i − xbj−1,i)∑

j(t
b
j,i − tbj−1,i)

.

Note that we only consider this sum over intervals where the best bid price does not change, i.e.

∑
j

(xbj,i − xbj−1,i) =

nb∑
k=1

lk∑
j=1

(xbl,i − xbl−1,i),
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and ∑
j

(tbj,i − tbj−1,i) =

nb∑
k=1

lk∑
j=1

(tbj,i − tbj−1,i).

The drift on the ask side of the book is calculated analogously. For each queue, our drift estimate is then

given by

Ĉi =
1

2

(
Ĉbi + Ĉai

)
× 60,

where the factor 60 appears because we have chosen minutes as our unit of time.

Now, let ωbi,j (resp. ωai,j) denote the size of the order placed in the ith queue on the bid (resp. ask)

side of the book at time tj . To estimate the covariance matrix, Σ2, we equate, for m,n ∈ {1, . . . , 50},

σ̂2
mn =

1

60× 2

J∑
j=1

∑(
ωk1m,j
104

×
ωk2n,j
104
× 1{k1=k2}

)
, (4.5)

k1 and k2 indicate which side of the book the order is placed on. The inner sum is taken over all orders in

queuesm and n that occur at time tj . The indicator function ensures that we are only considering covari-

ance between orders on the same side of the book. To ensure our estimated covariance has the correct

sign, we also adopt the convention that the sizes of orders that increase liquidity at a given queue (limit

orders) are positive, and the sizes of orders that decrease liquidity at a given queue (cancellations/market

orders) are negative. This procedure is equivalent to calculating the cross variation between individual

queues over the hour-long period (excluding the cross variation that results from price changes as we

model this separately in this setup). The factor of 60 is because we are calculating the quadratic variation

over the full hour and the factor of 2 is because we are considering the average over both sides of the

book. Note that when m = n, σmn = σ2
m, and (4.5) reduces to

σ̂2
m =

1

60× 2

J∑
j=1

(
ωkm,j
104

)2

,

where this sum is calculated for all orders on both sides of the book. This estimation yields a negative

covariance between any two adjacent queues, which is what we would expect given our hypothesis that

cancellations/market orders in a given queue excite limit orders in the adjacent queue nearer the mid.

(a) (b) (c)

Figure 4.5: Estimated drift 4.5(a), volatility 4.5(b) and correlation 4.5(c) functions.
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Figures 4.5(b) and 4.5(a) show the estimated drift and volatility functions for the data, and Figure

4.5(c) gives an illustration of the estimated correlation between adjacent queues. The fact that both the

estimated volatility and correlation are much larger near the mid is to be expected as a large proportion

of the total activity of the book (90.82% for this data set) happens in the first 10 queues.

To estimate the parameters γ and δ in equations (4.1) and (4.2), we will use the same method as [18].

Let P (t) denote the observed mid at time t, measured in cents. Let I be the average local imbalance of

the data over the hour long period under consideration, i.e.

I =
1

J × 2× 50× 104

J∑
j=1

(
xbj,1 − xaj,i

)
,

where J is the total number of time steps in our data set and the factors 50 and 104 appear because of

our chosen units for order sizes and tick sizes. We then calculate our estimate γ̂ for γ by equating

P (1)− P (0) = 60× γ̂ × I,

i.e. we choose γ̂ so that the price change over the entire period is a function of the average local

imbalance over the period. The factor of 60 appears again because our chosen time unit is minutes.

In order to find an estimate for δ, the rate of price movements due to exogenous factors, we equate

(a scaled version of) our estimate δ̂ to the difference between the observed quadratic variation and the

expected quadratic variation due to local imbalance. The expected quadratic variation due to the local

imbalance is given by 60γ̂Ĩ , where

Ĩ =
1

J × 2× 50× 104

J∑
j=1

∣∣∣xbj,1 − xaj,i∣∣∣ .
For a given δ, we would expect 60 × δ price changes in each direction to occur because of exogenous

factors on top of this, so our estimate δ̂ is given by

120δ̂ =

 J∑
j=1

(P (j/J)− P ((j − 1)/J))2

− 60γ̂Ĩ .

Calculating these values for our data set yields

γ̂ = 641.25, (4.6)

and

δ̂ = 48.38. (4.7)
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4.4.4 Results

The aim of this section is to demonstrate the results of the simulation with the relevant parameters as

above. In order to demonstrate the goodness of fit of each of these models, we will give several graphs of

the simulations of our SDE model from Section 3.3.2, the SPDE model given in [18], and the observed

values from the data set. For both the SDE and SPDE models, we will simulate the limit order book

profile for one hour using 1500000 time steps, and we simulate the data over an hour, so we take T = 60.

We begin by comparing the price processes for each of these models.

(a) SPDR data set (b) Simulated SPDE model (c) Simulated SDE model

Figure 4.6: The price process over the hour from 11:00am to 12:00pm.

(a) SPDR data set (b) Simulated SPDE model (c) Simulated SDE model

Figure 4.7: The price process over the first forty seconds after 11:30am.

In Figure 4.6, the price series over the hour for each of the simulated models and the actual data is

given, while Figure 4.7 displays snapshots of the prices over the first forty seconds after 11:30am. When

measured in dollars, the quadratic variations of the observed price process, the simulated SPDE model

and the simulated SDE model are 0.5844, 0.5923, and 0.5771, respectively. From these observations,

it is clear that we get somewhat reasonable simulations of the price process from both models. Since

the price changing mechanism and method of parameter estimation here follows the work done in [18],

it is not surprising that, in terms of the price processes, similar results are produced by both sets of

simulations.

The more interesting case is the simulation of the order book profiles over the hour. Figure 4.8

displays the average profiles of the ask side of the order book over the hour under consideration, where

Figure 4.9 gives snapshots of the order book profiles on the bid side of the book at 4 evenly spaced
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intervals over the hour. The corresponding figures for the ask and bid sides of the book respectively can

be found in Appendix B.2.

(a) Simulated SPDE model (b) Simulated SDE model

Figure 4.8: Average profile on the ask side of the order book over the hour from 11:00am to 12:00pm.

(a) SPDR data set (b) Simulated SPDE model (c) Simulated SDE model

Figure 4.9: Snapshots of the profile on the bid side of the order book at 12 minute intervals in the hour
from 11:00am to 12:00pm.

It is clear that, while the SPDE model slightly underestimates the average profile of the book, the

SDE model is more volatile than both the observed data and the SPDE model and over estimates the

average profile. This is not surprising as the addition of the laplacian in the SPDE model has a smoothing

effect. It does, however, mean that in this straightforward implementation, the SDE model is not an

improvement on the SPDE model. On the other hand, it is worth noting that because the SDE model

is far more simple, the 1500000 simulations can be completed in less than 10% of the time required

for the SPDE model. Artificially smoothing the SDE simulations (by multiplying the random term by

0.7 in each time step) does significantly improve the fit of the model in terms of the order book profile

with little impact on its ability to model the price process. This suggests that exploring more robust

calibration techniques might improve the performance the simulation. Indeed, the quadratic variation of

the price process generated by the artifically smoothed SDE model is 0.5823 and the illustrations of the

simulated profile on the bid side of the book are given in Figure 4.10. It is clear from these simulations

that the smoothing achieved by the inclusion of the laplacian is important in simulating the order book

31



model. This suggests investigating a model that includes a laplacian term as well as the correlation we

have included might yield better results.

(a) Snapshots at 12 minute intervals (b) Average Profile

Figure 4.10: Simulated profiles for the bid side of the book (with smoothing).

4.4.5 A More Volatile Data Set

In this section, we perform a similar analysis on the SPDR Trust Series I for the same hour on 16 March

2020. 16 March 2020 represents a day of unusually high volatility, and performing our numerical anal-

ysis on this data set will give some indication of the robustness of our assumptions and methodologies.

This data set has different characteristics to the data set we have been considering until now. Indeed,

the total number of limit orders, market orders and cancellation orders of the hour on 16 March 2020 are

372317, 40288, and 348731, respectively, where in the same hour on 25 September 2019, these values

are 251383, 10833, 243697, respectively.

In this data set, there are nearly 7 times as many price changes than there are in the same hour on

25 September 2019 (152042 against 23338). This suggests that our assumption that the dynamics of

the order book between price changes can be modelled independently of the price-changing mechanism

may not be applicable in cases of unusually high volatility. The average spread is also much higher in

the March data set (522.90 against 120.07), and Figure 4.11 illustrates the significant difference in the

empirical distributions of the size of the bid/ask spread for the two data sets. Indeed, this distribution

is concentrated around 200 ticks on 25 September 2019, but it is much more spread out on 16 March

2020. These observations indicate that our assumption that the bid/ask spread is a constant two ticks is

also not valid in this case.
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Figure 4.11: Empirical distributions of the bid/ask spread.

To assess the performance of our model on this data set, we fit the SDE model from Section 3.3.2

to the data using the procedure described above. We find that, in this case, the net order flow over the

period provides a better estimate for the drift than the least squares estimate used in the previous section.

Indeed, we fit the drift by equating

Ĉi =
1

2× 60
(Db

i +Da
i − Cbi − Cai ),

where Db
i (resp. Cbi ) represents the total number of limit (resp. market/cancellation) orders placed at

the ith queue on the bid side of the book over the hour long period. Da
i and Cai are defined analogously

for the ask side of the book. Once we have fit the drift, all other parameters are fit using the same

methodology as the previous section. Graphs for the estimated drift and volatility functions are given

in Appendix B.3. We remark here that the estimates for the parameters that determine the rates of price

changes are much larger in magnitude in this case. Indeed, the estimates γ̂ and δ̂ are −62761.59 and

1561.23, respectively, for this data set, as opposed to 641.25 and 48.38, for the September data set.

This is an artefact of the fact that the quadratic variation (in dollar terms) is 18.62 for this data set and

only 0.5844 for the less volatile data set. We then simulate the fitted model and compare our simulated

price process and order book profiles with the observed data and with the simulations obtained from

the SPDE model in [18]. Note that, again, we artificially smooth the SDE model by multiplying the

random term by 0.6. The quadratic variations of the simulated price processes of the SDE and SPDE

models are 18.7447 and 18.7800, respectively, demonstrating that this model still does a reasonable job

of estimating the amount of variation in the price process. Plots of the simulated price processes are also

given in Appendix B.3.

These models do not, however, reproduce the characteristics of the order book profiles particularly

well, as can be seen in Figures 4.12 and 4.13. In each case, the simulated average order book profiles are

much larger than their observed counterparts. It is clear from this analysis that it would be meaningful

to investigate different techniques for modelling cases of extremely high volatiltiy. The analogous plots

for the bid side of the book are also given in Appendix B.3.

33



(a) Simulated SPDE model (b) Simulated SDE model

Figure 4.12: Average profile of the ask side of the order book over the hour from 11:00am to 12:00pm.

(a) SPDR data set (b) Simulated SPDE model (c) Simulated SDE model

Figure 4.13: Snapshots of the profile of the ask side of the order book at 12 minute intervals in the hour
from 11:00am to 12:00pm.
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Section 5

Conclusion

5.1 Conclusion

In this dissertaion, we demonstrated the applicability of Hawkes processes to model order arrival times

in a limit order book. We presented a microscopic order book model driven by Hawkes processes and,

by allowing time to tend to infinity and order sizes to tend to 0, we derived an SDE model for the limit

order book in continuous time. We then implemented our model by calibrating it to an observed data set

and demonstrated its ability to reproduce realistic order book profiles and price processes. We compared

these results with those obtained by using the SPDE model given in [18] and found the SDE model does

not perform better than its SPDE counterpart, but it is much more computationally efficient to simulate.

We also perform this analysis on a more volatile data set and find that, in this case, a different modelling

approach might be necessary.

5.2 Further Research

It is clear that incorporating the correlation between queues in this model does not do enough to smooth

the process. A natural extension of this model would be to include a laplacian term (as was done in [18])

and to determine how the inclusion of both the correlation between queues and the laplacian compares

to the SPDE model. One could then take the limit of this model as tick size tends to zero to obtain an

SPDE model for the limit order book dynamics.

Another interesting extension of this model would be to consider the scaling limit of the microscopic

model when the underlying Hawkes processes are nearly unstable. Limits of this type have been inves-

tigated in [27]. In this paper, Jaisson and Rosenbaum found that when the underlying Hawkes process is

nearly unstable, their asymptotic behaviour is the same as integrated Cox-Ingersoll-Ross ([14]) models.

They also found that, when considering the difference of two counting processes driven by such Hawkes

processes (as we have done in our mesoscopic limit), the scaling limit converges to a Heston model

([22]) (i.e. a model with stochastic volatility). The Hawkes processes we fit to the data in Section 4 have

rather large spectral radii, and this is consistent with the nearly unstable Hawkes processes fit to limit
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order book data [6] and [16]. Given this and the fact that our proposed model falls short when estimating

the volatility of the order book process, an investigation in this direction is also worth considering.
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Appendix A

A.1 Proofs of Theorems in Section 2.3

In this appendix we give the outline of the proofs of the Functional Central Limit Theorem and Law of

Large Numbers in Section 2.3. These are included for completeness and are not very different from the

proofs in [4]. We refer the reader to [4] for details.

Let N = (N1
t , . . . , N

d
t )t≥0 be a d-dimensional process with intensity

λi(t) = µi(q(t
−)) +

d∑
j=1

∫ t

0
αije

−βij(t−s)dNj,s.

Let the matrices µ(q), Φ andK be as defined in 2.5 and 2.6, respectively, i.e. µ(q) = (µi(q))i∈{1,...,d},

Φ = (φij)i,j∈{1,...,d}, and

K :=

∫ ∞
0

Φ(t)dt =

(∫ ∞
0

φij(t)dt

)
1≤i,j≤d

.

Assume that the stability condition in Proposition (2.1.3) holds, i.e. the spectral radius ofK is less than

one, and assume that µ(q) is finite and square integrable. In this case, we can give the versions of the

proofs of Theorems (2.3.1) and (2.3.2) that have been adapted to include the state-dependent exogenous

intensity.

We begin with the following lemma (Lemma 2 in [4]):

Lemma A.1.1. For all finite stopping times S, one has:

E[NS ] = E
[∫ S

0
µ(q(t−))dt

]
+ E

[∫ S

0
Φ(S − t)Ntdt

]
, and (A.1)

E[NS ] ≤ (Id−K)−1E
[∫ S

0
µ(q(t−))dt

]
component-wise. (A.2)

Proof. Let (Tp)p∈N denote the successive jump times of N and set Sp = S ∧ Tp. Since the stochastic

intensities λi are given by (2.7), we have that

E[NSp ] = E
[∫ Sp

0
µ(q(t−))dt

]
+ E

[∫ Sp

0
dt

∫ t

0
Φ(t− s)dNs

]
.
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By Fubini’s Theorem, we have that∫ Sp

0
dt

∫ t

0
Φ(t− s)dNs =

∫ Sp

0

(∫ Sp

s
Φ(t− s)dt

)
dNs

=

∫ Sp

0

(∫ Sp−s

0
Φ(t)dt

)
dNs.

Integrating by parts, using ψ(t) :=
∫ t

0 Φ(s)ds, we get

0 = ψ(0)NSp −ψ(Sp)N0 =

∫ Sp

0
ψ(Sp − t)dNt −

∫ Sp

0
Φ(Sp − t)Ntdt.

Since
∑d

i=1Ni,Sp ≤ p, the right hand side of the equation above is finite, so

E[NSp ] = E
[∫ Sp

0
µ(q(t−))dt

]
+ E

[∫ Sp

0
Φ(Sp − t)Ntdt

]
.

Since NSp → NS as p→∞, we have that∫ Sp

0
Φ(Sp − t)dNt =

∫ Sp

0
Φ(t)NSp−tdt

x∫ S

0
Φ(t)NS−tdt =

∫ S

0
Φ(S − t)Ntdt.

To see that (A.2) holds, note that

E[NSp ] = E
[∫ Sp

0
µ(q(t−))dt

]
+ E

[∫ Sp

0
dt

∫ t

0
Φ(t− s)dNs

]
≤ E

[∫ Sp

0
µ(q(t−))dt

]
+ E

[∫ ∞
0

dt

∫ t

0
Φ(t− s)dNs

]
, component-wise

= E
[∫ Sp

0
µ(q(t−))dt

]
+KE

[
NSp

]
.

By induction,

E[NSp ] ≤ (Id+K + · · ·+Kn−1)E
[∫ Sp

0
µ(q(t−))dt

]
+KnE

[
NSp

]
,

component-wise, for all n ∈ N. Since the spectral radius of K is less than one, we have that Kn → 0

as n→∞, and
∞∑
n=0

Kn = (Id−K)−1.

We also have that
∑d

i=1Ni,Sp ≤ p, so

E[NSp ] ≤ (Id−K)−1E
[∫ Sp

0
µ(q(t−))dt

]
.

Since E[NS ] = limp E[NSp ], we have

E[NS ] ≤ (Id−K)−1E
[∫ Sp

0
µ(q(t−))dt

]
component-wise,

as required.
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From now on, unless stated otherwise, the proofs are the same as in [4], except for the difference in

the expression of the expectation of Ns due to Lemma A.1.1.

Note that when t is deterministic, it follows from Fubini’s Theorem that equations (A.1)and (A.2)

become

E[Nt] = tE [µ(q)] + E
[∫ t

0
Φ(t− s)Nsds

]
, and

E[Nt] ≤ (Id−K)−1E [µ(q)] t component-wise.

Now, for n ≥ 1, let Φn be the d× d−matrix valued functions on R+ defined recursively by

Φ1 = Φ, and Φn+1(t) =

∫ t

0
Φ(t− s)Φn(s)ds.

By induction, we have that
∫∞

0 Φn(t)dt = Kn, for all n. Indeed,
∫∞

0 Φ1(t)dt = K, by definition and

if
∫∞

0 Φn(t)dt = Kn, then∫ ∞
0

Φn+1(t)dt =

∫ ∞
0

(∫ t

0
Φ(t− s)Φn(s)ds

)
dt

=

∫ ∞
0

(∫ ∞
0

1{s≤t}Φ(t− s)Φn(s)ds

)
dt

=

∫ ∞
0

Φn(s)

(∫ ∞
0

Φ(t− s)dt
)
ds

= Kn+1.

Let

Ψ :=
∑
n≥1

Φn.

Then our stability assumption ensures that
∫∞

0 Ψ(t)dt =
∑

n≥1K
n is finite component-wise.

The next result we need is a multivariate version of the renewal equation. It is Lemma 3 in [4].

Lemma A.1.2. Let h be a Borel and locally bounded function from R+ → Rd. Then there exists a

unique, locally bounded function f : R+ → Rd such that f is a solution to

f(t) = h(t) +

∫ t

0
Φ(t− s)f(s)ds, for all t > 0, (A.3)

and it is given by

fh(t) = h(t) +

∫ t

0
Ψ(t− s)h(s)ds.

Now, let (Mt)t∈R+ be the d-dimensional martingale defined by

Mt = Nt − Λ(t),

where Λ(t) =
∫ t

0 λ(s)ds is the compensator defined in (2.1) and λ = (λi)i∈{1,...,d}. Then we have
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Lemma A.1.3. For all t ≥ 0,

E[Nt] = tE[µ(q)] +

(∫ t

0
Ψ(t− s)sds

)
E[µ(q)], and (A.4)

Nt − E[Nt] = Mt +

∫ t

0
Ψ(t− s)dMsds (A.5)

Lemma A.1.4. Let p ∈ [0, 1] and assume that
∫∞

0 tpΦ(t)dt <∞ component-wise. Then

(i) If p < 1, we have

T p
(
T−1E[NTv]− v(Id−K)−1E[µ(q)]

)
→ 0 as T →∞

uniformly in v ∈ [0, 1].

(ii) If p = 1, we have

T
(
T−1E[NT ]− (Id−K)−1E[µ(q)]

)
→ −(Id−K)−1

(∫ ∞
0

tΦ(t)dt

)
(Id−K)−1E[µ(q)] as T →∞.

In what follows, || · || denotes the Euclidean norm in the relevant space (i.e. in Rd or the set of d× d
matrices).

Lemma A.1.5. There exists a constant Cµ,Φ such that for all t,∆ > 0,

E

[
sup

t≤s≤t+∆
||Ms −Ms||2

]
≤ Cµ,Φ∆.

Now, letW = (W 1, . . . ,W d) be a standard d-dimensional Brownian motion and for i ∈ {1, . . . , d},
let σi = (Σii)

1/2. We then have the following lemma:

Lemma A.1.6. The martingales M (T ) := (T−1/2MTv)v∈[0,1] converge in law for the Skorokhod topol-

ogy to (σ1W
1, . . . , σdW

d).

To prove Theorem 2.3.2, we note that it is a special case of the following more general Theorem

(adapted from Theorem 2 in [4]).

Theorem A.1.7. The processes

1√
T

(NTv − E[NTv]) , v ∈ [0, 1]

converges in law for the Skorokhod topology to

(Id−K)−1Σ1/2Wv, v ∈ [0, 1]

as T → ∞, where (Wv)v∈[0,1] is a standard d-dimensional Brownian motion and Σ is the diagonal

matrix such that Σii = ((Id−K)−1E[µ(q)])i.
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We are now in a position to prove Theorem 2.3.2:

Proof of Theorem 2.3.2. Recall that in this setting the kernel matrix of the Hawkes process takes the

form

Φ(t) = (αije
−βijt)i,j∈{1,...,d}.

It is easy to see that for every i, j ∈ {1, . . . , d},
∫∞

0 αije
−βijtt1/2dt <∞. Using this fact, Lemma A.1.4

with p = 1
2 gives

T 1/2
(
T−1E[NTv]− v(Id−K)−1E[µ(q)]

)
→ 0 as T →∞

uniformly in v ∈ [0, 1]. From Theorem A.1.7 we have that for v ∈ [0, 1]

1√
T

(NTv − E[NTv])→ (Id−K)−1Σ1/2Wv

in distribution as T →∞. Putting these together gives the result.

A.2 Mesoscopic Model in Four Dimensions

In this appendix, we give explicit expressions for the drift and covariance parameters in the scaling limit

for the Hawkes process in section 3.2.2. For ease of notation, we consider the four dimensional case of

Theorem 3.2.1. The matrix of kernel norms isthen equal to

K =


α11
β11

α12
β12

0 α14
β14

α21
β21

α22
β22

0 0

0 0 α33
β33

α34
β34

0 0 α43
β43

α44
β44

 .
Denote αij

βij
as kij , then

(Id−K)−1 =
1

K
(cij)1≤i,j≤4,

where

K = (1− k11)[(1− k11)(1− k22)− k12k21] [(1− k33) (1− k44)− k34k43]
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and

c11 = (1− k11) (1− k22) [(1− k34) (1− k44)− k43k44] ,

c12 = k12 (1− k11) [(1− k34) (1− k44)− k43k44] ,

c13 = k14k43 (1− k11) (1− k22) ,

c14 = − k14 (k11 − 1) (k22 − 1) (k34 − 1) ,

c21 = k21 (1− k11) [(k34 − 1) (k44 − 1)− k43k44] ,

c22 = (k11 − 1)2 [(k34 − 1) (k44 − 1)− k43k44] ,

c23 = k14k21k43 (1− k11) ,

c24 = k14k21 (k11 − 1) (k34 − 1) ,

c31 = 0,

c32 = 0,

c33 = (1− k11) (1− k44) [(1− k11) (1− k22)− k12k21] ,

c34 = k44 (1− k11) [(1− k11) (1− k22)− k12k21] ,

c41 = 0,

c42 = 0,

c43 = k43 (1− k11) [(1− k11) (1− k22)− k12k21] , and

c44 = (1− k11) (1− k34) [(1− k11) (1− k22)− k12k21] .

From this, it follows that

(Id−K)−1Σ
1
2Wt =


∑4

j=1
c1jσj
K W j

t∑4
j=1

c2jσj
K W j

t∑4
j=1

c3jσj
K W j

t∑4
j=1

c4jσj
K W j

t ,


where

σ2
i =

∑4
j=1 cijµ̂j

K
.

Finally, we have that ( 1√
n
Z1
tn −

√
nt(σ2

1 − σ2
2), 1√

n
Z2
tn −

√
nt(σ2

3 − σ2
4)) converges in distribution to

(ζ1B
1
t , ζ2B

2
t ), where

ζ1B
1
t =

4∑
j=1

(c1j − c2j)σj
K

W j
t ,

ζ2B
2
t =

4∑
j=1

(c3j − c4j)σj
K

W j
t ,
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so

ζ1 =

√√√√ 4∑
j=1

(c1j − c2j)2σ2
j

K2
,

ζ2 =

√√√√ 4∑
j=1

(c3j − c4j)2σ2
j

K2
,

and

〈B1, B2〉t =
4∑
j=1

(c1j − c2j)(c3j − c4j)σ
2
j

ζ1ζ2K2
t.
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Appendix B

In this section we include plots of our numerical results that were not included in Section 4.

B.1 Goodness of Fit of Estimated Hawkes Processes

We begin by giving the quantile-quantile plots for the counting processes we fit to the first three queues

on the ask side of the limit order book.

(a) Limit orders at the
best ask price

(b) Market/cancellation orders
at the best ask price

(c) Limit orders one tick away
from the best ask price

(d) Market/cancellation orders
one tick away from the best
ask price

(e) Limit orders two ticks
away from the best ask price

(f) Market/cancellation orders two
ticks away from the best
ask price

Figure B.1: Quantile-Quantile plots for various counting processes to model event arrivals at the first
three queues on the ask side of the book.

B.2 Simulation Results

In this section we give the results of the simulations we performed in Section 4.4. We first give the

comparison of the average order book profiles on the bid side of the book in Figure B.2.
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(a) Simulated SPDE model (b) Simulated SDE model

Figure B.2: Average profile of the bid side of the order book over the hour from 11:00am to 12:00pm.

Figure B.3 gives a comparison of the 12-minute snapshots of the simulated profiles of the ask side

of the book against the observed data set. Figure B.4 gives these illustrations for the SDE simulations of

the ask side of the book when we artificially smooth the volatility.

(a) SPDR data set (b) Simulated SPDE model (c) Simulated SDE model

Figure B.3: Snapshots of the profile of the ask side of the order book at 12 minute intervals in the hour
from 11:00am to 12:00pm.
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(a) Snapshots at 12 minute intervals (b) Average Profile

Figure B.4: Simulated profiles for the ask side of the book (with smoothing).

B.3 Estimated Parameters and Simulation Results for March Data Set

In this section we give some of the illustrations of the results of our analysis when performed on a more

volatile data set.

B.3.1 Estimated Drift and Covariance Parameterss

We begin by plotting the calibrated parameters for each queue in Figure B.5. It is clear from Figure

B.5(c) that the correlation is significantly higher in the March data set when compared to the September

dataset (Figure 4.5(c)). This is another distinct difference between the two data sets. The estimated drift

and volatility are also both far less smooth than their September counterparts (Figures B.5(a) and B.5(b)

against 4.5(a) and 4.5(b)).

(a) (b) (c)

Figure B.5: Estimated drift B.5(a), volatility B.5(b), and correlation B.5(c) functions.

B.3.2 Simulation Results

Finally, we give some of the illustrations of the simulation results of each of the models when applied to

the March data set. Figures B.6 and B.7 give the simulated price processes of each model over the hour

46



and over forty seconds after 11:30am, respectively. We also give the actual price processes over these

intervals for reference.

(a) SPDR data set (b) Simulated SPDE model (c) Simulated SDE model

Figure B.6: The price process over the hour from 11:00am to 12:00pm

(a) SPDR data set (b) Simulated SPDE model (c) Simulated SDE model

Figure B.7: The price process over the first forty seconds after 11 : 30am

Figures B.8 and B.9 give the simulation results for both models for the bid side of the book.

(a) Simulated SPDE model (b) Simulated SDE model

Figure B.8: Average profile of the bid side of the order book over the hour from 11:00am to 12:00pm.
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(a) SPDR data set (b) Simulated SPDE model (c) Simulated SDE model

Figure B.9: Snapshots of the profile of the bid side of the order book at 12 minute intervals in the hour
from 11:00am to 12:00pm.

48



Appendix C

Code

C.1 Maximum Likelihood Estimation

In this section we give the code for the maximum likelihood estimation of the state dependent Hawkes

process. We use the mpoints python package developed in [31] as a framework for this implemen-

tation. The implementation is, however, quite different from the mpoints because of the distinct

differences in the way state-dependence has been included in the exponential Hawkes processes. We

begin by giving the functions we used to compute the log-likelihood function. We have used cython

to improve the speed of these functions.

%l o a d _ e x t cy th on
import numpy as np
c i m p o r t numpy as np
from l i b c . math c i m p o r t exp
from l i b c . math c i m p o r t l o g

DTYPEf = np . f l o a t
DTYPEi = np . i n t
c t y p e d e f np . f l o a t _ t DTYPEf_t
c t y p e d e f np . i n t _ t DTYPEi_t

def p a r t i a l _ l o g _ l i k e l i h o o d ( i n t e v e n t _ t y p e ,
np . n d a r r a y [ DTYPEf_t , ndim =1] mu ,
np . n d a r r a y [ DTYPEf_t , ndim =1] a l p h a s ,
np . n d a r r a y [ DTYPEf_t , ndim =1] b e t a s ,
i n t n_even t s ,
i n t n _ s t a t e s ,
np . n d a r r a y [ DTYPEf_t , ndim =1] t imes ,
np . n d a r r a y [ DTYPEi_t , ndim =1] e v e n t s ,
np . n d a r r a y [ DTYPEi_t , ndim =1] s t a t e s ,
np . f l o a t s t a r t _ t i m e ,
np . f l o a t end_ t ime ) :
’ ’ ’
T h i s f u n c t i o n c a l c u l a t e s t h e log− l i k e l i h o o d
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f u n c t i o n f o r a g i v e n e v e n t .

e v e n t _ t y p e : The e v e n t t h e log− l i k e l i h o o d f u n c t i o n
must be c a l c u l a t e d f o r .
mu : v e c t o r o f base r a t e s ( s i z e : n _ s t a t e s x 1 )
a l p h a s : v e c t o r o f a l p h a s ( s i z e : n _ e v e n t s x 1 )
b e t a s : v e c t o r o f b e t a s ( s i z e : n _ e v e n t s x 1 )
n _ e v e n t s : number o f e v e n t t y p e s
n _ s t a t e s : number o f s t a t e s
t i m e s : v e c t o r o f t i m e s o f e v e n t a r r i v a l s
e v e n t s : v e c t o r i n d i c a t i n g t y p e o f e v e n t a t
each t i m e
s t a t e s : v e c t o r i n d i c a t i n g s t a t e a t each t i m e

’ ’ ’

’ ’ ’We w i l l use p a r t i a l sums t o s t o r e v a l u e s t h a t we ’ l l use
t o c a l c u l a t e t h e l o g l i k e l i h o o d r e c u r s i v e l y . ’ ’ ’

c d e f np . n d a r r a y [ DTYPEf_t , ndim =1] p a r t i a l _ s u m s
= np . z e r o s ( ( n _ e v e n t s ) , d t y p e =DTYPEf )
c d e f i n t n , even t , s t a t e , e , e1 , x , i ndex_end
c d e f dou b l e t ime , p r e v i o u s _ t i m e , i n t e n s i t y _ o f _ t h e _ e v e n t
c d e f DTYPEf_t a lpha , be t a , r a t i o ,
t i m e _ i n c r e m e n t , t i m e _ i n c r e m e n t _ 2

# c a l c u l a t i n g t h e r a t i o a lpha / b e t a
c d e f np . n d a r r a y [ DTYPEf_t , ndim =1] r a t i o s = \
np . z e r o s ( ( n _ e v e n t s ) , d t y p e =DTYPEf )
f o r e1 in range ( n _ e v e n t s ) :

a l p h a = a l p h a s [ e1 ]
b e t a = b e t a s [ e1 ]
r a t i o s [ e1 ] = a l p h a / b e t a

c d e f dou b l e l o g _ l i k e l i h o o d = 0

p r e v i o u s _ t i m e = s t a r t _ t i m e
index_end = t i m e s . shape [ 0 ]

f o r n in range ( 0 , i ndex_end ) :
t ime = t i m e s [ n ]
e v e n t = e v e n t s [ n ]
s t a t e = s t a t e s [ n ]

# Update t h e p a r t i a l sums
t i m e _ i n c r e m e n t = t ime − p r e v i o u s _ t i m e
f o r e1 in range ( n _ e v e n t s ) :

50



b e t a = b e t a s [ e1 ]
p a r t i a l _ s u m s [ e1 ] ∗= exp(− b e t a ∗ t i m e _ i n c r e m e n t )

#Compute t h e f i r s t t erm o f t h e log− l i k e l i h o o d

i f e v e n t == e v e n t _ t y p e :
i n t e n s i t y _ o f _ t h e _ e v e n t = mu[ s t a t e ]
f o r e in range ( n _ e v e n t s ) :

i n t e n s i t y _ o f _ t h e _ e v e n t += p a r t i a l _ s u m s [ e ]
l o g _ l i k e l i h o o d += l o g ( i n t e n s i t y _ o f _ t h e _ e v e n t )

# Update t h e p a r t i a l sums

a l p h a = a l p h a s [ e v e n t ]
p a r t i a l _ s u m s [ e v e n t ] += a l p h a
p r e v i o u s _ t i m e = t ime

# Compute t h e second term o f t h e l i k e l i h o o d

l o g _ l i k e l i h o o d −= mu[ s t a t e ]∗ t i m e _ i n c r e m e n t

#Compute t h e t h i r d term o f t h e l i k e l i h o o d

t i m e _ i n c r e m e n t = end_ t ime − t ime
b e t a = b e t a s [ e v e n t ]
r a t i o = r a t i o s [ e v e n t ]
l o g _ l i k e l i h o o d −= r a t i o ∗
(1 − exp(− b e t a ∗ t i m e _ i n c r e m e n t ) )

l o g _ l i k e l i h o o d −= mu[ s t a t e ]∗ t i m e _ i n c r e m e n t
re turn l o g _ l i k e l i h o o d

def p a r t i a l _ g r a d i e n t ( i n t e v e n t _ t y p e ,
np . n d a r r a y [ DTYPEf_t , ndim =1] mus ,
np . n d a r r a y [ DTYPEf_t , ndim =1] a l p h a s ,
np . n d a r r a y [ DTYPEf_t , ndim =1] b e t a s ,
i n t n_even t s ,
i n t n _ s t a t e s ,
np . n d a r r a y [ DTYPEf_t , ndim =1] t imes ,
np . n d a r r a y [ DTYPEi_t , ndim =1] e v e n t s ,
np . n d a r r a y [ DTYPEi_t , ndim =1] s t a t e s ,
np . f l o a t s t a r t _ t i m e ,
np . f l o a t end_ t ime ) :

’ ’ ’
T h i s f u n c t i o n c a l c u l a t e s t h e g r a d i e n t
f u n c t i o n f o r a g i v e n e v e n t .

e v e n t _ t y p e : The e v e n t t h e log− l i k e l i h o o d f u n c t i o n
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must be c a l c u l a t e d f o r .
mu : v e c t o r o f base r a t e s ( s i z e : n _ s t a t e s x 1 )
a l p h a s : v e c t o r o f a l p h a s ( s i z e : n _ e v e n t s x 1 )
b e t a s : v e c t o r o f b e t a s ( s i z e : n _ e v e n t s x 1 )
n _ e v e n t s : number o f e v e n t t y p e s
n _ s t a t e s : number o f s t a t e s
t i m e s : v e c t o r o f t i m e s o f e v e n t a r r i v a l s
e v e n t s : v e c t o r i n d i c a t i n g t y p e o f e v e n t a t
each t i m e
s t a t e s : v e c t o r i n d i c a t i n g s t a t e a t each t i m e

’ ’ ’
c d e f i n t n , even t , s t a t e , e , e1 , x , e2 , i ndex_end
c d e f dou b l e t ime , p r e v i o u s _ t i m e
c d e f DTYPEf_t a lpha , be t a , r a t i o , t i m e _ i n c r e m e n t , \
t i m e _ i n c r e m e n t _ 2 , s a m p l e _ d u r a t i o n , a , b , c , \
decay , i n t e n s i t y _ o f _ t h e _ e v e n t
s a m p l e _ d u r a t i o n = end_ t ime − s t a r t _ t i m e

c d e f np . n d a r r a y [ DTYPEf_t , ndim =1] g r a d i e n t _ m u s =\
np . z e r o s ( ( n _ s t a t e s ) )

c d e f np . n d a r r a y [ DTYPEf_t , ndim =1] g r a d i e n t _ a l p h a s = \
np . z e r o s ( ( n _ e v e n t s ) )

c d e f np . n d a r r a y [ DTYPEf_t , ndim =1] g r a d i e n t _ b e t a s = \
np . z e r o s ( ( n _ e v e n t s ) )

# c a l c u l a t i n g t h e r a t i o a lpha / b e t a
c d e f np . n d a r r a y [ DTYPEf_t , ndim =1] r a t i o s = \
np . z e r o s ( ( n _ e v e n t s ) , d t y p e =DTYPEf )
f o r e1 in range ( n _ e v e n t s ) :

a l p h a = a l p h a s [ e1 ]
b e t a = b e t a s [ e1 ]
r a t i o s [ e1 ] = a l p h a / b e t a

#We ’ l l use t h e p a r t i a l sums i n t h e r e c u r s i o n
c d e f np . n d a r r a y [ DTYPEf_t , ndim =1] p a r t i a l _ s u m s =\
np . z e r o s ( ( n _ e v e n t s ) , d t y p e =DTYPEf )
c d e f np . n d a r r a y [ DTYPEf_t , ndim =1] p a r t i a l _ s u m s _ 1 = \
np . z e r o s ( ( n _ e v e n t s ) , d t y p e =DTYPEf )

p r e v i o u s _ t i m e = s t a r t _ t i m e
index_end = t i m e s . shape [ 0 ]
f o r n in range ( 0 , i ndex_end ) :

t ime = t i m e s [ n ]
e v e n t = e v e n t s [ n ]
s t a t e = s t a t e s [ n ]

# Update t h e p a r t i a l sums
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t i m e _ i n c r e m e n t = t ime − p r e v i o u s _ t i m e
f o r e1 in range ( n _ e v e n t s ) :

b e t a = b e t a s [ e1 ]
p a r t i a l _ s u m s _ 1 [ e1 ] += t i m e _ i n c r e m e n t ∗ \
p a r t i a l _ s u m s [ e1 ]
decay = exp(− b e t a ∗ t i m e _ i n c r e m e n t )
p a r t i a l _ s u m s _ 1 [ e1 ] ∗= decay
p a r t i a l _ s u m s [ e1 ] ∗= decay

# Update t h e g r a d i e n t s
i f e v e n t == e v e n t _ t y p e :

i n t e n s i t y _ o f _ t h e _ e v e n t = mus [ s t a t e ]
f o r e in range ( n _ e v e n t s ) :

i n t e n s i t y _ o f _ t h e _ e v e n t += p a r t i a l _ s u m s [ e ]
g r a d i e n t _ m u s [ s t a t e ] += 1 / i n t e n s i t y _ o f _ t h e _ e v e n t

f o r e in range ( n _ e v e n t s ) :
a l p h a = a l p h a s [ e ]
i f a l p h a != 0 :

g r a d i e n t _ a l p h a s [ e ] +=\
( p a r t i a l _ s u m s [ e ] / a l p h a ) / i n t e n s i t y _ o f _ t h e _ e v e n t

g r a d i e n t _ b e t a s [ e ] −=\
p a r t i a l _ s u m s _ 1 [ e ] / i n t e n s i t y _ o f _ t h e _ e v e n t

# Update t h e p a r t i a l sums
g r a d i e n t _ m u s [ s t a t e ] −= t i m e _ i n c r e m e n t
a l p h a = a l p h a s [ e v e n t ]
p a r t i a l _ s u m s [ e v e n t ] += a l p h a
p r e v i o u s _ t i m e = t ime

t i m e _ i n c r e m e n t = end_ t ime − t ime
b e t a = b e t a s [ e v e n t ]
r a t i o = r a t i o s [ e v e n t ]
c = 1 − exp(− b e t a ∗ t i m e _ i n c r e m e n t )
g r a d i e n t _ a l p h a s [ e v e n t ] −= c / b e t a
g r a d i e n t _ b e t a s [ e v e n t ] −= \
r a t i o ∗ t i m e _ i n c r e m e n t ∗ (1 − c )
g r a d i e n t _ b e t a s [ e v e n t ] −= − r a t i o ∗ c / b e t a

g r a d i e n t _ m u s [ s t a t e ] −= t i m e _ i n c r e m e n t

re turn g r ad i e n t_ mu s , g r a d i e n t _ a l p h a s , g r a d i e n t _ b e t a s

def r e s i d u a l s ( np . n d a r r a y [ DTYPEf_t , ndim =2] mus ,
np . n d a r r a y [ DTYPEf_t , ndim =2] a l p h a s ,
np . n d a r r a y [ DTYPEf_t , ndim =2] b e t a s ,
i n t n_even t s ,
i n t n _ s t a t e s ,
np . n d a r r a y [ DTYPEf_t , ndim =1] t imes ,
np . n d a r r a y [ DTYPEi_t , ndim =1] e v e n t s ,
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np . n d a r r a y [ DTYPEi_t , ndim =1] s t a t e s ,
DTYPEf_t s t a r t _ t i m e ,
np . n d a r r a y [ DTYPEf_t , ndim =2] i n i t i a l _ p a r t i a l _ s u m s ) :

’ ’ ’
T h i s f u n c t i o n c a l c u l a t e s t h e r e s i d u a l s o f a g i v e n model .

e v e n t _ t y p e : The e v e n t t h e log− l i k e l i h o o d f u n c t i o n
must be c a l c u l a t e d f o r .
mu : v e c t o r o f base r a t e s ( s i z e : n _ s t a t e s x 1 )
a l p h a s : v e c t o r o f a l p h a s ( s i z e : n _ e v e n t s x 1 )
b e t a s : v e c t o r o f b e t a s ( s i z e : n _ e v e n t s x 1 )
n _ e v e n t s : number o f e v e n t t y p e s
n _ s t a t e s : number o f s t a t e s
t i m e s : v e c t o r o f t i m e s o f e v e n t a r r i v a l s
e v e n t s : v e c t o r i n d i c a t i n g t y p e o f e v e n t a t
each t i m e
s t a t e s : v e c t o r i n d i c a t i n g s t a t e a t each t i m e

’ ’ ’

c d e f i n t l e n g t h = t i m e s . shape [ 0 ]
c d e f np . n d a r r a y [ DTYPEf_t , ndim =2] r e s i d u a l s = \
np . z e r o s ( ( n_even t s , l e n g t h− i n d e x _ s t a r t + 1 ) , d t y p e =DTYPEf )

c d e f np . n d a r r a y [ DTYPEi_t , ndim =1] r e s i d u a l s _ l e n g t h s \
= np . z e r o s ( n_even t s , d t y p e =DTYPEi )
c d e f np . n d a r r a y [ DTYPEf_t , ndim =1] p r e v i o u s _ t i m e s = \
s t a r t _ t i m e ∗np . ones ( n_even t s , d t y p e =DTYPEf )
c d e f np . n d a r r a y [ DTYPEf_t , ndim =2] p a r t i a l _ s u m s =\
np . z e r o s ( ( n_even t s , n _ e v e n t s ) , d t y p e =DTYPEf )
c d e f np . n d a r r a y [ DTYPEf_t , ndim =2] p a r t i a l _ s u m s _ o l d = \
np . z e r o s ( ( n_even t s , n _ e v e n t s ) , d t y p e =DTYPEf )
c d e f np . n d a r r a y [ DTYPEf_t , ndim =2] r a t i o s = \
np . z e r o s ( ( n_even t s , n _ e v e n t s ) , d t y p e =DTYPEf )
c d e f i n t e1 , x , e2 , n , e , even t , s t a t e , i , pos
c d e f DTYPEf_t a lpha , be t a , t ime , t i m e _ l a s t

#Compute r a t i o s a lpha / b e t a
f o r e1 in range ( n _ e v e n t s ) :

f o r e2 in range ( n _ e v e n t s ) :
a l p h a = a l p h a s [ e1 , e2 ]
b e t a = b e t a s [ e1 , e2 ]
i f ( b e t a ! = 0 ) :

r a t i o s [ e1 , e2 ] = a l p h a / b e t a

f o r e1 in range ( n _ e v e n t s ) :
f o r e2 in range ( n _ e v e n t s ) :

p a r t i a l _ s u m s [ e1 , e2 ] += /
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i n i t i a l _ p a r t i a l _ s u m s [ e1 , e2 ]
p a r t i a l _ s u m s _ o l d [ e1 , e2 ] = p a r t i a l _ s u m s [ e1 , e2 ]

# C a l c u l a t i n g t h e r e s i d u a l s
t i m e _ l a s t = s t a r t _ t i m e

f o r n in range ( i n d e x _ s t a r t , l e n g t h ) :
t ime = t i m e s [ n ]
e v e n t = e v e n t s [ n ]
s t a t e = s t a t e s [ n ]
pos = r e s i d u a l s _ l e n g t h s [ e v e n t ]

r e s i d u a l s [ even t , pos ] += /
( t ime − p r e v i o u s _ t i m e s [ e v e n t ] ) ∗mus [ even t , s t a t e ]

f o r e in range ( n _ e v e n t s ) :
i f e != e v e n t :

i = r e s i d u a l s _ l e n g t h s [ e ]
r e s i d u a l s [ e , i ] += r a t i o s [ even t , e ]

i f e == e v e n t :
# t h i s e v e n t c o n t r i b u t e s t o t h e n e x t r e s i d u a l

r e s i d u a l s [ e , pos +1] += r a t i o s [ even t , e ]
# Update p a r t i a l sums up t o c u r r e n t t i m e ( e x c l u d i n g ) :
f o r e1 in range ( n _ e v e n t s ) :

f o r e2 in range ( n _ e v e n t s ) :
p a r t i a l _ s u m s [ e1 , e2 ] ∗= /
exp(− b e t a s [ e1 , e2 ] ∗ ( t ime − t i m e _ l a s t ) )

#Add t h e p a r t i a l sums
f o r e in range ( n _ e v e n t s ) :

r e s i d u a l s [ even t , pos ] += \
p a r t i a l _ s u m s _ o l d [ e , e v e n t ] \
− p a r t i a l _ s u m s [ e , e v e n t ]
# save new p a r t i a l sums
p a r t i a l _ s u m s _ o l d [ e , e v e n t ] = \
p a r t i a l _ s u m s [ e , e v e n t ]

f o r e in range ( n _ e v e n t s ) :
p a r t i a l _ s u m s [ even t , e ] += r a t i o s [ even t , e ]

# Update p o s i t i o n
t i m e _ l a s t = t ime
p r e v i o u s _ t i m e s [ e v e n t ] = t ime
r e s i d u a l s _ l e n g t h s [ e v e n t ] += 1

r e s u l t = [ ]
f o r e in range ( n _ e v e n t s ) :

l e n g t h = r e s i d u a l s _ l e n g t h s [ e ]
r e s u l t . append ( r e s i d u a l s [ e , 0 : l e n g t h ] )

re turn r e s u l t
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We used the following class to implement the functions above. Note that this is the class used to fit

the six-dimensional state-dependent Hawkes process.

i m p o r t numpy as np
i m p o r t math
i m p o r t copy
i m p o r t s c i p y . o p t i m i z e as o p t

c l a s s HawkesExp :

d e f _ _ i n i t _ _ ( s e l f , n_even t s , n _ s t a t e s , e v e n t s _ l a b e l s , \
s t a t e s _ l a b e l s , f o r c e d _ z e r o s ) :

s e l f . n _ e v e n t s = n _ e v e n t s
s e l f . n _ s t a t e s = n _ s t a t e s
s e l f . e v e n t s _ l a b e l s = e v e n t s _ l a b e l s
s e l f . s t a t e s _ l a b e l s = s t a t e s _ l a b e l s
s e l f . f o r c e d _ z e r o s = f o r c e d _ z e r o s
s e l f . mus = np . z e r o s ( ( n_even t s , n _ s t a t e s ) )
s e l f . a l p h a s = np . z e r o s ( ( n_even t s , n _ e v e n t s ) )
s e l f . b e t a s = np . z e r o s ( ( n_even t s , n _ e v e n t s ) )
s e l f . r a t i o s = np . z e r o s ( ( n_even t s , n _ e v e n t s ) )

d e f s e t _ h a w k e s _ p a r a m e t e r s ( s e l f , mus , a l p h a s , b e t a s ) :

s e l f . mus = copy . copy ( mus )
s e l f . a l p h a s = copy . copy ( a l p h a s )
s e l f . b e t a s = copy . copy ( b e t a s )
s e l f . r a t i o s = np . d i v i d e ( a l p h a s , b e t a s )

d e f e s t i m a t e _ h a w k e s _ p a r a m e t e r s ( s e l f , t imes , e v e n t s , s t a t e s ,
s t a r t _ t i m e , end_t ime , max imu m_n umb er_ o f_ i t e r a t i ons =2000 ,
method = ’TNC’ , p a r a m e t e r s _ l o w e r _ b o u n d =10∗∗(−6) ,
p a r a m e t e r s _ u p p e r _ b o u n d =None ,
m i n _ d e c a y _ c o e f f i c i e n t = 0 . 5 , m a x _ d e c a y _ c o e f f i c i e n t = 1 0 0 ) :

# G e n e r a t e i n i t i a l g u e s s e s
g u e s s e s = [ ]
i f np . shape ( m i n _ d e c a y _ c o e f f i c i e n t ) == ( ) :
# i f a s c a l a r was g i v e n i n s t e a d o f a m a t r i x

m i n _ b e t a s = m i n _ d e c a y _ c o e f f i c i e n t ∗ \
np . ones ( ( s e l f . n_even t s , s e l f . n _ e v e n t s ) )

i f np . shape ( m a x _ d e c a y _ c o e f f i c i e n t ) == ( ) :
# i f a s c a l a r was g i v e n i n s t e a d o f a m a t r i x

max_betas = m a x _ d e c a y _ c o e f f i c i e n t ∗ \
np . ones ( ( s e l f . n_even t s , s e l f . n _ e v e n t s ) )
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# G e n e r a t e some random i n i t i a l v a l u e s
# a v e r a g e i n t e n s i t i e s
a v e r a g e _ i n t e n s i t i e s = \
np . z e r o s ( ( s e l f . n_even t s , s e l f . n _ s t a t e s ) )
f o r n i n r a n g e ( l e n ( t i m e s ) ) :

e = e v e n t s [ n ]
s = s t a t e s [ n ]
a v e r a g e _ i n t e n s i t i e s [ e , s ] += 1

a v e r a g e _ i n t e n s i t i e s = \
np . d i v i d e ( a v e r a g e _ i n t e n s i t i e s , end_ t ime − s t a r t _ t i m e )

#mus
guess_mus = \
np . z e r o s ( ( s e l f . n_even t s , s e l f . n _ s t a t e s ) )

f o r e i n r a n g e ( s e l f . n _ e v e n t s ) :
f o r x i n r a n g e ( s e l f . n _ s t a t e s ) :

guess_mus [ e , x ] = a v e r a g e _ i n t e n s i t i e s [ e , x ] / 2

# b e t a s
g u e s s _ b e t a s = \
np . z e r o s ( ( s e l f . n_even t s , s e l f . n _ e v e n t s ) )
f o r e1 i n r a n g e ( s e l f . n _ e v e n t s ) :

f o r e2 i n r a n g e ( s e l f . n _ e v e n t s ) :
u_min = math . log10 ( m i n _ b e t a s [ e1 , e2 ] )
u_max = math . log10 ( max_betas [ e1 , e2 ] )
u = np . random . un i fo rm ( u_min , u_max )
b e t a = 10 ∗∗ u
g u e s s _ b e t a s [ e1 , e2 ] = b e t a

# a l p h a s
g u e s s _ a l p h a s = \
np . z e r o s ( ( s e l f . n_even t s , s e l f . n _ e v e n t s ) )
f o r e1 i n r a n g e ( s e l f . n _ e v e n t s ) :

f o r e2 i n r a n g e ( s e l f . n _ e v e n t s ) :
u = np . random . un i fo rm ( 0 , 1 )
a l p h a = u ∗ g u e s s _ b e t a s [ e1 , e2 ]
g u e s s _ a l p h a s [ e1 , e2 ] = a l p h a

# l i s t o f random g u e s s
g = s e l f . p a r a m e t e r s _ t o _ a r r a y ( guess_mus ,
g u e s s _ a l p h a s , g u e s s _ b e t a s )

d imens ion = s e l f . n _ s t a t e s + 2 ∗ s e l f . n _ e v e n t s
bounds = \
[ ( p a r a m e t e r s _ l o w e r _ b o u n d , p a r a m e t e r s _ u p p e r _ b o u n d ) ] \
∗ d imens ion

57



opt_mus = np . z e r o s ( ( s e l f . n_even t s , s e l f . n _ s t a t e s ) )
o p t _ a l p h a s = \
np . z e r o s ( ( s e l f . n_even t s , s e l f . n _ e v e n t s ) )
o p t _ b e t a s = \
np . z e r o s ( ( s e l f . n_even t s , s e l f . n _ e v e n t s ) )
s u c c e s s = True
s u c c e s s e s = [ ]
s t a t u s = −999
s t a t u s e s = [ ]
message = \
’ M u l t i p l e messages b e c a u s e p a r a l l e l e s t i m a t i o n ’
messages = [ ]
fun = 0
j a c s = [ ]
h e s s s = [ ]
n fev = 0
n i t = 0
k i n d s _ o f _ b e s t _ i n i t i a l _ g u e s s e s = ’ ’
f o r e i n r a n g e ( s e l f . n _ e v e n t s ) :

# d e f i n e n e g a t i v e l i k e l i h o o d
d e f l i k e l i h o o d _ m i n u s ( p a r a m e t e r s ) :

r e s u l t = − s e l f . l o g _ l i k e l i h o o d _ p a r t i a l ( e ,
p a r a m e t e r s , t imes , e v e n t s , s t a t e s ,
s t a r t _ t i m e , end_ t ime )
r e t u r n r e s u l t

d e f g r a d i e n t _ o f _ l i k e l i h o o d _ m i n u s ( p a r a m e t e r s ) :
r e s u l t = − s e l f . g r a d i e n t _ p a r t i a l ( e ,
p a r a m e t e r s , t imes , e v e n t s , s t a t e s ,
s t a r t _ t i m e , end_ t ime )
r e t u r n r e s u l t

# o p t i m i s e l i k e l i h o o d
o p t i m a l _ r e s u l t s = [ ]

guess_mus , g u e s s _ a l p h a s , g u e s s _ b e t a s = \
s e l f . a r r a y _ t o _ p a r a m e t e r s ( g , s e l f . n_even t s ,
s e l f . n _ s t a t e s , s e l f . n _ e v e n t s )
g _ p a r t i a l = \
s e l f . p a r a m e t e r s _ t o _ a r r a y ( guess_mus [ e : e + 1 , : ] ,
g u e s s _ a l p h a s [ : , e : e +1 ] , g u e s s _ b e t a s [ : , e : e + 1 ] )

o = o p t . min imize ( l i k e l i h o o d _ m i n u s , g _ p a r t i a l ,
method=method , bounds=bounds ,
j a c = g r a d i e n t _ o f _ l i k e l i h o o d _ m i n u s ,
o p t i o n s ={ ’ m a x i t e r ’ :
ma x im um_ numb er_ o f_ i t e r a t i on s } )
o p t i m a l _ r e s u l t s . append ( o )

# Save o p t i m a l p a r a m e t e r s
v , a , b = s e l f . a r r a y _ t o _ p a r a m e t e r s ( o . x ,
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s e l f . n_even t s , s e l f . n _ s t a t e s , 1 , e )
opt_mus [ e : e + 1 , : ] = v
o p t _ a l p h a s [ : , e : e +1] = a
o p t _ b e t a s [ : , e : e +1] = b

# Save o p t i m i s e r i n f o r m a t i o n
s u c c e s s e s . append ( o . s u c c e s s )
s t a t u s e s . append ( o . s t a t u s )
messages . append ( o . message )
i f s u c c e s s and n o t o . s u c c e s s :

s u c c e s s = F a l s e
s t a t u s = o . s t a t u s

fun += o . fun
j a c s . append ( o . j a c )
n fev += o . n fev
n i t += o . n i t

o = o p t . O p t i m i z e R e s u l t ( )
x = s e l f . p a r a m e t e r s _ t o _ a r r a y ( opt_mus , o p t _ a l p h a s ,
o p t _ b e t a s )
o [ ’ x ’ ] = x
o [ ’ s u c c e s s ’ ] = s u c c e s s
o [ ’ s u c c e s s e s ’ ] = s u c c e s s e s
o [ ’ s t a t u s ’ ] = s t a t u s
o [ ’ s t a t u s e s ’ ] = s t a t u s e s
o [ ’ message ’ ] = message
o [ ’ messages ’ ] = messages
o [ ’ fun ’ ] = fun
o [ ’ j a c s ’ ] = j a c s
o [ ’ h e s s s ’ ] = h e s s s
o [ ’ nfev ’ ] = n fev
o [ ’ n i t ’ ] = n i t
r e t u r n o , g

d e f g r a d i e n t _ p a r t i a l ( s e l f , e v e n t _ t y p e , p a r a m e t e r s , t imes ,
e v e n t s , s t a t e s , s t a r t _ t i m e , end_ t ime ) :

n _ e v e n t s = s e l f . n _ e v e n t s
n _ s t a t e s = s e l f . n _ s t a t e s
mu , a l p h a s , b e t a s = \

s e l f . a r r a y _ t o _ p a r a m e t e r s ( p a r a m e t e r s , n_even t s ,
n _ s t a t e s , 1 , e v e n t _ t y p e )

g_mu , g_a lphas , g _ b e t a s = \
p a r t i a l _ g r a d i e n t ( e v e n t _ t y p e , mu [ 0 , : ] , a l p h a s [ : , 0 ] ,
b e t a s [ : , 0 ] , n_even t s , n _ s t a t e s , t imes , e v e n t s ,
s t a t e s , np . f l o a t ( s t a r t _ t i m e ) , np . f l o a t ( end_ t ime ) )

a = np . z e r o s ( ( n_even t s , 1 ) )
b = np . z e r o s ( ( n_even t s , 1 ) )
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c = np . z e r o s ( ( 1 , n _ s t a t e s ) )
a [ : , 0 ] = g _ a l p h a s
b [ : , 0 ] = g _ b e t a s
c [ 0 , : ] = g_mu

r e t u r n s e l f . p a r a m e t e r s _ t o _ a r r a y ( c , a , b )

d e f l o g _ l i k e l i h o o d _ p a r t i a l ( s e l f , e v e n t _ t y p e , p a r a m e t e r s ,
t imes , e v e n t s , s t a t e s , s t a r t _ t i m e , end_ t ime ) :

n _ e v e n t s = s e l f . n _ e v e n t s
n _ s t a t e s = s e l f . n _ s t a t e s
mu , a l p h a s , b e t a s = \

s e l f . a r r a y _ t o _ p a r a m e t e r s ( p a r a m e t e r s , n_even t s ,
n _ s t a t e s , 1 , e v e n t _ t y p e )

r e t u r n p a r t i a l _ l o g _ l i k e l i h o o d ( e v e n t _ t y p e , mu [ 0 , : ] ,
a l p h a s [ : , 0 ] , b e t a s [ : , 0 ] , n_even t s , n _ s t a t e s ,
t imes , e v e n t s , s t a t e s , np . f l o a t ( s t a r t _ t i m e ) ,
np . f l o a t ( end_ t ime ) )

d e f a r r a y _ t o _ p a r a m e t e r s ( s e l f , a r r a y , n_even t s_1 , n _ s t a t e s ,
n _ e v e n t s _ 2 =0 , e v e n t _ t y p e = 5 ) :

i f n _ e v e n t s _ 2 == 0 :
n _ e v e n t s _ 2 = n _ e v e n t s _ 1

mus = np . z e r o s ( ( n_even t s_2 , n _ s t a t e s ) )
f o r n i n r a n g e ( n _ e v e n t s _ 2 ) :

f o r s i n r a n g e ( n _ s t a t e s ) :
i n d e x = n∗ n _ s t a t e s + s
mus [ n , s ] = a r r a y [ i n d e x ]

a l p h a s = np . z e r o s ( ( n_even t s_1 , n _ e v e n t s _ 2 ) )
f o r i i n r a n g e ( n _ e v e n t s _ 1 ) :

f o r k i n r a n g e ( n _ e v e n t s _ 2 ) :
i n d e x = n _ e v e n t s _ 2 ∗ n _ s t a t e s + i ∗ n _ e v e n t s _ 2 + k
a l p h a s [ i , k ] = a r r a y [ i n d e x ]

b e t a s = np . z e r o s ( ( n_even t s_1 , n _ e v e n t s _ 2 ) )
f o r i i n r a n g e ( n _ e v e n t s _ 1 ) :

f o r k i n r a n g e ( n _ e v e n t s _ 2 ) :
i n d e x = n _ e v e n t s _ 2 ∗ n _ s t a t e s
i n d e x += n _ e v e n t s _ 1 ∗ n _ e v e n t s _ 2
i n d e x += i ∗ n _ e v e n t s _ 2 + k
b e t a s [ i , k ] = a r r a y [ i n d e x ]

i f ( s e l f . f o r c e d _ z e r o s ) :
# S e t t i n g t h e s e v a l u e s t o ( ve ry c l o s e t o ) z e r o

# doesn ’ t change t h e v a l u e o f log− l i k e l i h o o d
# i f t h e s e v a l u e s a r e i g n o r e d .
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i f ( n _ e v e n t s _ 2 = = 1 ) :
i f ( e v e n t _ t y p e == 0 ) :

a l p h a s [ 2 ] = 10∗∗−12
b e t a s [ 2 ] = 1
a l p h a s [ 4 : ] = 10∗∗−12
b e t a s [ 4 : ] = 1

e l i f ( e v e n t _ t y p e == 1 ) :
a l p h a s [ 2 : ] = 10∗∗−12
b e t a s [ 2 : ] = 1

e l i f ( e v e n t _ t y p e == 2 ) :
a l p h a s [ 0 : 2 ] = 10∗∗−12
a l p h a s [ 4 ] = 10∗∗−12
b e t a s [ 0 : 2 ] = 1
b e t a s [ 4 ] = 1

e l i f ( e v e n t _ t y p e == 3 ) :
a l p h a s [ 0 : 2 ] = 10∗∗−12
a l p h a s [ 4 : ] = 10∗∗−12
b e t a s [ 0 : 2 ] = 1
b e t a s [ 4 : ] = 1

e l i f ( e v e n t _ t y p e == 4 ) :
a l p h a s [ 0 : 4 ] = 10∗∗−12
b e t a s [ 0 : 4 ] = 1

e l i f ( e v e n t _ t y p e == 5 ) :
a l p h a s [ 0 : 4 ] = 10∗∗−12
b e t a s [ 0 : 4 ] = 1

e l i f ( n _ e v e n t s _ 2 = = 6 ) :

a l p h a s [ 0 , 2 : ] = 10∗∗−12
a l p h a s [ 1 , 2 : ] = 10∗∗−12
a l p h a s [ 2 , 0 : 2 ] = 10∗∗−12
a l p h a s [ 2 , 4 : ] = 10∗∗−12
a l p h a s [ 3 , 1 ] = 10∗∗−12
a l p h a s [ 3 , 4 : ] = 10∗∗−12
a l p h a s [ 4 , 0 : 4 ] = 10∗∗−12
a l p h a s [ 5 , 0 : 2 ] = 10∗∗−12
a l p h a s [ 5 , 3 ] = 10∗∗−12

temp = np . where ( a l p h a s == 10∗∗−12)
b e t a s [ temp ] = 1

r e t u r n mus , a l p h a s , b e t a s
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d e f p a r a m e t e r s _ t o _ a r r a y ( s e l f , mus , a l p h a s , b e t a s ) :

s = np . shape ( a l p h a s )
t = np . shape ( mus )
n _ e v e n t s _ 1 = s [ 0 ]
n _ e v e n t s _ 2 = s [ 1 ]
n _ s t a t e s = t [ 1 ]

r e s u l t = \
np . z e r o s ( n _ e v e n t s _ 2 ∗ n _ s t a t e s + \
2 ∗ n _ e v e n t s _ 1 ∗ n _ e v e n t s _ 2 )

f o r n i n r a n g e ( n _ e v e n t s _ 2 ) :
f o r j i n r a n g e ( n _ s t a t e s ) :

i n d e x = n∗ n _ s t a t e s + j
r e s u l t [ i n d e x ] = mus [ n , j ]

f o r i i n r a n g e ( n _ e v e n t s _ 1 ) :
f o r k i n r a n g e ( n _ e v e n t s _ 2 ) :

i n d e x = n _ e v e n t s _ 2 ∗ n _ s t a t e s
i n d e x += i ∗ n _ e v e n t s _ 2 + k
r e s u l t [ i n d e x ] = a l p h a s [ i , k ]

f o r i i n r a n g e ( n _ e v e n t s _ 1 ) :
f o r k i n r a n g e ( n _ e v e n t s _ 2 ) :

i n d e x = n _ e v e n t s _ 2 ∗ n _ s t a t e s
i n d e x += n _ e v e n t s _ 1 ∗ n _ e v e n t s _ 2
i n d e x += i ∗ n _ e v e n t s _ 2 + k
r e s u l t [ i n d e x ] = b e t a s [ i , k ]

r e t u r n r e s u l t
d e f c o m p u t e _ e v e n t s _ r e s i d u a l s ( s e l f , t imes , e v e n t s , s t a t e s ,
s t a r t _ t i m e , i n i t i a l _ p a r t i a l _ s u m s = 0 ) :

# Check i f no i n i t i a l p a r t i a l sums i f g i v e n
s = np . z e r o s ( ( s e l f . n_even t s , s e l f . n _ e v e n t s ) )
i f l e n ( np . shape ( i n i t i a l _ p a r t i a l _ s u m s ) ) != 0 :

s = i n i t i a l _ p a r t i a l _ s u m s
s = np . d i v i d e ( s , s e l f . b e t a s )

r e t u r n r e s i d u a l s ( s e l f . mus , s e l f . a l p h a s , s e l f . b e t a s ,
s e l f . n_even t s , s e l f . n _ s t a t e s ,

t imes , e v e n t s , s t a t e s , s t a r t _ t i m e , s )
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